In this paper, we consider equations of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\user1{\ddot x}\user2{ + }B\user1{\dot x}\user2{ + }A\user1{x} = 0$$
\end{document}, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\user1{x}\user2{ = }\user1{x}\left( \user1{t} \right)$$
\end{document} is a function with values in the Hilbert space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{H}$$
\end{document}, the operator B is symmetric, and the operator A is uniformly positive and self-adjoint in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{H}$$
\end{document}. The linear operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{T}$$
\end{document} generating the C0-semigroup in the energy space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathcal{H}}_1 \times {\mathcal{H}}$$
\end{document} is associated with this equation. We prove that this semigroup is exponentially stable if the operator B is uniformly positive and the operator A dominates B in the sense of quadratic forms.
机构:
Pontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, BrazilPontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, Brazil
Kubrusly, Carlos S.
Nhan Levan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USAPontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, Brazil