Exponential Stability of Semigroups Related to Operator Models in Mechanics

被引:0
|
作者
R. O. Griniv
A. A. Shkalikov
机构
[1] Institute of Applied Problems in Mathematics and Mechanics,
[2] M. V. Lomonosov Moscow State University,undefined
来源
Mathematical Notes | 2003年 / 73卷
关键词
self-adjoint operator; -semigroup; exponential stability; energy space; dissipative operator; Hilbert space; generalized spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\user1{\ddot x}\user2{ + }B\user1{\dot x}\user2{ + }A\user1{x} = 0$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\user1{x}\user2{ = }\user1{x}\left( \user1{t} \right)$$ \end{document} is a function with values in the Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document}, the operator B is symmetric, and the operator A is uniformly positive and self-adjoint in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document}. The linear operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}$$ \end{document} generating the C0-semigroup in the energy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{H}}_1 \times {\mathcal{H}}$$ \end{document} is associated with this equation. We prove that this semigroup is exponentially stable if the operator B is uniformly positive and the operator A dominates B in the sense of quadratic forms.
引用
收藏
页码:618 / 624
页数:6
相关论文
共 50 条