Luttinger theorem and imbalanced Fermi systems

被引:0
|
作者
Pierbiagio Pieri
Giancarlo Calvanese Strinati
机构
[1] School of Science and Technology,
[2] Physics Division,undefined
[3] Università di Camerino,undefined
[4] INFN,undefined
[5] Sezione di Perugia,undefined
来源
关键词
Solid State and Materials;
D O I
暂无
中图分类号
学科分类号
摘要
The proof of the Luttinger theorem, which was originally given for a normal Fermi liquid with equal spin populations formally described by the exact many-body theory at zero temperature, is here extended to an approximate theory given in terms of a “conserving” approximation also with spin imbalanced populations. The need for this extended proof, whose underlying assumptions are here spelled out in detail, stems from the recent interest in superfluid trapped Fermi atoms with attractive inter-particle interaction, for which the difference between two spin populations can be made large enough that superfluidity is destroyed and the system remains normal even at zero temperature. In this context, we will demonstrate the validity of the Luttinger theorem separately for the two spin populations for any “Φ-derivable” approximation, and illustrate it in particular for the self-consistent t-matrix approximation.
引用
收藏
相关论文
共 50 条
  • [1] Luttinger theorem and imbalanced Fermi systems
    Pieri, Pierbiagio
    Strinati, Giancarlo Calvanese
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (04):
  • [2] Fermi surfaces and Luttinger's theorem in paired fermion systems
    Sachdev, S
    Yang, K
    PHYSICAL REVIEW B, 2006, 73 (17):
  • [3] Occupation numbers in strongly polarized Fermi gases and the Luttinger theorem
    Urban, Michael
    Schuck, Peter
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [4] Luttinger Theorem for the Strongly Correlated Fermi Liquid of Composite Fermions
    Balram, Ajit C.
    Toke, Csaba
    Jain, J. K.
    PHYSICAL REVIEW LETTERS, 2015, 115 (18)
  • [5] Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids and Mott insulators
    Dzyaloshinskii, I
    PHYSICAL REVIEW B, 2003, 68 (08):
  • [6] Momentum sharing in imbalanced Fermi systems
    Hen, O.
    Sargsian, M.
    Weinstein, L. B.
    Piasetzky, E.
    Hakobyan, H.
    Higinbotham, D. W.
    Braverman, M.
    Brooks, W. K.
    Gilad, S.
    Adhikari, K. P.
    Arrington, J.
    Asryan, G.
    Avakian, H.
    Ball, J.
    Baltzell, N. A.
    Battaglieri, M.
    Beck, A.
    Beck, S. May-Tal
    Bedlinskiy, I.
    Bertozzi, W.
    Biselli, A.
    Burkert, V. D.
    Cao, T.
    Carman, D. S.
    Celentano, A.
    Chandavar, S.
    Colaneri, L.
    Cole, P. L.
    Crede, V.
    D'Angelo, A.
    De Vita, R.
    Deur, A.
    Djalali, C.
    Doughty, D.
    Dugger, M.
    Dupre, R.
    Egiyan, H.
    El Alaoui, A.
    El Fassi, L.
    Elouadrhiri, L.
    Fedotov, G.
    Fegan, S.
    Forest, T.
    Garillon, B.
    Garcon, M.
    Gevorgyan, N.
    Ghandilyan, Y.
    Gilfoyle, G. P.
    Girod, F. X.
    Goetz, J. T.
    SCIENCE, 2014, 346 (6209) : 614 - 617
  • [8] Generalization of the Luttinger theorem for fermionic ladder systems
    Gagliardini, P
    Haas, S
    Rice, TM
    PHYSICAL REVIEW B, 1998, 58 (15) : 9603 - 9606
  • [9] Broken Luttinger theorem in the two-dimensional Fermi-Hubbard model
    Osborne, Ian
    Paiva, Thereza
    Trivedi, Nandini
    PHYSICAL REVIEW B, 2021, 104 (23)
  • [10] Fermi liquid behavior and Luttinger's theorem close to a diverging scattering length
    Gaudio, S.
    Jackiewicz, J.
    Bedell, K. S.
    PHILOSOPHICAL MAGAZINE, 2009, 89 (22-24) : 1823 - 1830