A Schwarz Lemma for the Pentablock

被引:0
|
作者
Nujood M. Alshehri
Zinaida A. Lykova
机构
[1] Newcastle University,School of Mathematics, Statistics and Physics
来源
关键词
Inner functions; Pentablock; Schwarz lemma; Distinguished boundary; Primary 32F45; 30E05; 93B36; 93B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a Schwarz lemma for the pentablock. The pentablock P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} is defined by P={(a21,trA,detA):A=[aij]i,j=12∈B2×2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {P}=\{(a_{21}, {\text {tr}}A, \det A) : A=[a_{ij}]_{i,j=1}^2 \in \mathbb {B}^{2\times 2}\} \end{aligned}$$\end{document}where B2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}^{2\times 2}$$\end{document} denotes the open unit ball in the space of 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} complex matrices. The pentablock is a bounded non-convex domain in C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^3$$\end{document} which arises naturally in connection with a certain problem of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-synthesis. We develop a concrete structure theory for the rational maps from the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} to the closed pentablock P¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {P}}$$\end{document} that map the unit circle T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} to the distinguished boundary bP¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\overline{\mathcal {P}}$$\end{document} of P¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {P}}$$\end{document}. Such maps are called rational P¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal {P}}}$$\end{document}-inner functions. We give relations between P¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal {P}}}$$\end{document}-inner functions and inner functions from D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} to the symmetrized bidisc. We describe the construction of rational P¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal {P}}}$$\end{document}-inner functions x=(a,s,p):D→P¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = (a, s, p) : \mathbb {D} \rightarrow \overline{\mathcal {P}}$$\end{document} of prescribed degree from the zeroes of a, s and s2-4p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^2-4p$$\end{document}. The proof of this theorem is constructive: it gives an algorithm for the construction of a family of such functions x subject to the computation of Fejér–Riesz factorizations of certain non-negative trigonometric functions on the circle. We use properties and the construction of rational P¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal {P}}}$$\end{document}-inner functions to prove a Schwarz lemma for the pentablock.
引用
收藏
相关论文
共 50 条
  • [1] A Schwarz Lemma for the Pentablock
    Alshehri, Nujood M.
    Lykova, Zinaida A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (02)
  • [2] Schwarz Lemma and Boundary Schwarz Lemma for Pluriharmonic Mappings
    Zhu, Jian-Feng
    FILOMAT, 2018, 32 (15) : 5385 - 5402
  • [3] Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma
    Cai, Fangming
    Rui, Jie
    Zhong, Deguang
    AIMS MATHEMATICS, 2023, 8 (12): : 30992 - 31007
  • [4] Schwarz lemma and Schwarz-Pick lemma for solutions of the α-harmonic equation ☆
    Li, Ming
    Ma, Xiu-Shuang
    Wang, Li-Mei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 201
  • [5] Schwarz lemma for the tetrablock
    Edigarian, Armen
    Zwonek, Wlodzimierz
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 506 - 514
  • [6] The Schwarz lemma at the boundary
    Krantz, Steven G.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (05) : 455 - 468
  • [7] A spectral Schwarz lemma
    Vesentini, Edoardo
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2008, 19 (04) : 309 - 323
  • [8] THE SCHWARZ LEMMA: AN ODYSSEY
    Broder, Kyle
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1141 - 1155
  • [9] THE SCHWARZ-LEMMA
    YAMASHITA, S
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1985, 28 (02): : 233 - 236
  • [10] Schwarz's Lemma
    Jacobsthal, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1931, 165 : 59 - 63