Vexillary Elements in the Hyperoctahedral Group

被引:0
|
作者
Sara Billey
Tao Kai Lam
机构
[1] Massachusetts Institute of Technology,Dept. of Mathematics
[2] National University of Singapore,Dept. of Mathematics
来源
关键词
vexillary; Stanley symmetric function; reduced word; hyperoctahedral group;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:139 / 152
页数:13
相关论文
共 50 条
  • [1] Vexillary elements in the hyperoctahedral group
    Billey, S
    Lam, TK
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (02) : 139 - 152
  • [2] On Interpolation Categories for the Hyperoctahedral Group
    Heidersdorf, Th.
    Tyriard, G.
    ALGEBRAS AND REPRESENTATION THEORY, 2025,
  • [3] Hultman elements for the hyperoctahedral groups
    Woo, Alexander
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [4] A decomposition of the group algebraof a hyperoctahedral group
    J. Matthew Douglass
    Drew E. Tomlin
    Mathematische Zeitschrift, 2018, 290 : 735 - 758
  • [5] Transitive factorizations in the hyperoctahedral group
    Bini, G.
    Goulden, I. P.
    Jackson, D. M.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (02): : 297 - 312
  • [6] A decomposition of the group algebraof a hyperoctahedral group
    Douglass, J. Matthew
    Tomlin, Drew E.
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 735 - 758
  • [7] The absolute order on the hyperoctahedral group
    Myrto Kallipoliti
    Journal of Algebraic Combinatorics, 2011, 34 : 183 - 211
  • [8] STRUCTURE AND REPRESENTATIONS OF THE HYPEROCTAHEDRAL GROUP
    BAAKE, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (11) : 3171 - 3182
  • [9] The Mallows Measures on the Hyperoctahedral Group
    Korotkikh S.
    Journal of Mathematical Sciences, 2017, 224 (2) : 269 - 277
  • [10] Character formulas descents for the hyperoctahedral group
    Adin, Ron M.
    Athanasiadis, Christos A.
    Elizalde, Sergi
    Roichman, Yuval
    ADVANCES IN APPLIED MATHEMATICS, 2017, 87 : 128 - 169