Optimization of the control by elastic boundary forces at two ends of a string in an arbitrarily large time interval

被引:0
|
作者
V. A. Il’in
E. I. Moiseev
机构
[1] Moscow State University,Steklov Mathematical Institute
[2] Russian Academy of Sciences,undefined
来源
Differential Equations | 2008年 / 44卷
关键词
Matching Condition; Terminal Condition; Boundary Control; Boundary Energy; Mixed Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We further develop the method, devised earlier by the authors, which permits finding closed-form expressions for the optimal controls by elastic boundary forces applied at two ends, x = 0 and x = l, of a string. In a sufficiently large time T, the controls should take the string vibration process, described by a generalized solution u(x, t) of the wave equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u_{tt} (x,t) - u_{tt} (x,t) = 0, $$\end{document} from an arbitrary initial state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \{ u(x,0) = \varphi (x), u_t (x,0) = \psi (x) $$\end{document} to an arbitrary terminal state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \{ u(x,T) = \hat \varphi (x), u_t (x,T) = \hat \psi (x). $$\end{document}
引用
收藏
页码:92 / 114
页数:22
相关论文
共 50 条