Existence and uniqueness result for a fluid–structure–interaction evolution problem in an unbounded 2D channel

被引:0
|
作者
Clara Patriarca
机构
[1] Politecnico di Milano,Dipartimento di Matematica
关键词
Poiseuille flow; Lift force; Weak solutions; 35Q30; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
In an unbounded 2D channel, we consider the vertical displacement of a rectangular obstacle in a regime of small flux for the incoming flow field, modelling the interaction between the cross-section of the deck of a suspension bridge and the wind. We prove an existence and uniqueness result for a fluid–structure-interaction evolution problem set in this channel, where at infinity the velocity field of the fluid has a Poiseuille flow profile. We introduce a suitable definition of weak solutions and we make use of a penalty method. In order to prevent the obstacle from going excessively far from the equilibrium position and colliding with the boundary of the channel, we introduce a strong force in the differential equation governing the motion of the rigid body and we find a unique global-in-time solution.
引用
收藏
相关论文
共 50 条
  • [1] Existence and uniqueness result for a fluid-structure-interaction evolution problem in an unbounded 2D channel
    Patriarca, Clara
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (04):
  • [2] On the existence and the uniqueness of the solution to a fluid-structure interaction problem
    Boffi, Daniele
    Gastaldi, Lucia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 279 : 136 - 161
  • [3] On the existence and the uniqueness of the solution of a fluid-structure interaction scattering problem
    Barucq, Helene
    Djellouli, Rabia
    Estecahandy, Elodie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 571 - 588
  • [4] A note on existence and uniqueness of solutions for a 2D bioheat problem
    Bedin, Luciano
    Viloche Bazan, Fermin S.
    APPLICABLE ANALYSIS, 2017, 96 (04) : 590 - 605
  • [5] A RESULT OF EXISTENCE AND UNIQUENESS FOR THE 2-D NEUMANN-KELVIN PROBLEM
    POUSIN, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (20): : 947 - +
  • [6] Shape Sensitivity Analysis of a 2D Fluid–Structure Interaction Problem
    Valentin Calisti
    Ilaria Lucardesi
    Jean-François Scheid
    Journal of Optimization Theory and Applications, 2023, 199 : 36 - 79
  • [7] Existence and uniqueness of solution for fluid-plate interaction problem
    Curkovic, A.
    Marusic-Paloka, E.
    APPLICABLE ANALYSIS, 2016, 95 (04) : 715 - 730
  • [8] Existence result for a fluid structure interaction problem with friction type slip boundary condition
    Baffico, L.
    Sassi, T.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (08): : 831 - 844
  • [9] A Uniqueness Result for 3D Incompressible Fluid-Rigid Body Interaction Problem
    Boris Muha
    Šárka Nečasová
    Ana Radošević
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [10] A Uniqueness Result for 3D Incompressible Fluid-Rigid Body Interaction Problem
    Muha, Boris
    Necasova, Sarka
    Radosevic, Ana
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)