A clustering approach for detecting implausible observation values in electronic health records data

被引:0
|
作者
Hossein Estiri
Jeffrey G. Klann
Shawn N. Murphy
机构
[1] Massachusetts General Hospital,Laboratory of Computer Science
[2] Partners HealthCare,Research Information Science and Computing
[3] Massachusetts General Hospital,Department of Neurology
关键词
Unsupervised clustering; Implausible observations; Data quality; Electronic health records; Informatics applications; Anomaly detection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A clustering approach for detecting implausible observation values in electronic health records data
    Estiri, Hossein
    Klann, Jeffrey G.
    Murphy, Shawn N.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (1)
  • [2] Automated identification of implausible values in growth data from pediatric electronic health records
    Daymont, Carrie
    Ross, Michelle E.
    Localio, A. Russell
    Fiks, Alexander G.
    Wasserman, Richard C.
    Grundmeier, Robert W.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (06) : 1080 - 1087
  • [3] Automated identification of implausible values in growth data from pediatric electronic health records (vol 45, pg 187, 2019)
    Daymont, Carrie
    Ross, Michelle E.
    Localio, Russell
    Fiks, Alexander G.
    Wasserman, Richard C.
    Grundmeier, Robert W.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 29 (01) : 223 - 223
  • [4] Detecting Systemic Data Quality Issues in Electronic Health Records
    Ta, Casey N.
    Weng, Chunhua
    MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL, 2019, 264 : 383 - 387
  • [5] Multilevel Clustering Explainer: An Explainable Approach to Electronic Health Records
    Clementino, Jose M., Jr.
    Faical, Bruno S.
    Bones, Christian C.
    Traina, Caetano, Jr.
    Gutierrez, Marco A.
    Traina, Agma J. M.
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 253 - 258
  • [6] M-ClustEHR: A multimodal clustering approach for electronic health records
    Bampa, Maria
    Miliou, Ioanna
    Jovanovic, Braslav
    Papapetrou, Panagiotis
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [7] Functional clustering methods for longitudinal data with application to electronic health records
    Zeldow, Bret
    Flory, James
    Stephens-Shields, Alisa
    Raebel, Marsha
    Roy, Jason A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (03) : 655 - 670
  • [8] Detecting dementia in Electronic Health Records Systems for pragmatic trials: a structured approach
    Dorr, D. A.
    Bobo, M.
    Dunne, M.
    Han, P.
    Vydiswaran, V.
    Kaye, J.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2023, 71 : S8 - S8
  • [9] DensityTransfer: A Data Driven Approach for Imputing Electronic Health Records
    Wang, Fei
    Zhou, Jiayu
    Hu, Jianying
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2763 - 2768
  • [10] New approach for the identification of implausible values and outliers in longitudinal childhood anthropometric data
    Shi, Joy
    Korsiak, Jill
    Roth, Daniel E.
    ANNALS OF EPIDEMIOLOGY, 2018, 28 (03) : 204 - 211