Period matrices of some hyperelliptic Riemann surfaces

被引:0
|
作者
Yoshihiko Shinomiya
机构
[1] Shizuoka University,Department of Mathematics, Faculty of Education
来源
manuscripta mathematica | 2024年 / 173卷
关键词
Primary 32G20; Secondary 14H40; 32G15;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact Riemann surface of genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document} and Ω(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (X)$$\end{document} the space of holomorphic 1-forms on X. A period matrix Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document} is a g×g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\times g$$\end{document} matrix defined by the pairing of a symplectic basis of H1(X,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1(X, {\mathbb {Z}})$$\end{document} and a basis of Ω(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (X)$$\end{document}. The matrix Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document} is symmetric and its imaginary part Im(Π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Im}(\Pi )$$\end{document} is positive definite and depends only on symplectic bases of H1(X,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1(X, {\mathbb {Z}})$$\end{document}. Period matrices are important tools for studying complex structures of Riemann surfaces. However, only few formulas for period matrices are known for Riemann surfaces of genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 2$$\end{document}. For Riemann surfaces of lower genus, there are only six Riemann surfaces whose period matrices are described by some formula. In this paper, our targets are algebraic curves defined by w2=z(z2-1)(z2-a12)(z2-a22)⋯(z2-ag-12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w^2=z(z^2-1)(z^2-a_1^2)(z^2-a_2^2)\cdots (z^2-a_{g-1}^2)$$\end{document} for any g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document} and a1,a2,⋯,ag-1∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1, a_2, \dots , a_{g-1}\in {\mathbb {R}}$$\end{document} which satisfy 1<a1<a2<⋯<ag-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<a_1<a_2<\cdots <a_{g-1}$$\end{document}. We describe period matrices of these algebraic curves by collections of complex integrals. To do this, we construct the curves from Euclidean polygons. A symplectic basis of these curves are given from the polygons.
引用
收藏
页码:567 / 590
页数:23
相关论文
共 50 条