Stability of the Rhombus Vortex Problem with a Central Vortex

被引:0
|
作者
Allyson Oliveira
Claudio Vidal
机构
[1] Universidade Federal de Sergipe,Departamento de Matemática
[2] Universidad del Bío-Bío,Grupo de Investigación en Sistemas Dinámicos y Aplicaciones (GISDA), Departamento de Matemática, Facultad de Ciencias
来源
Journal of Dynamics and Differential Equations | 2020年 / 32卷
关键词
Five vortex problem on the plane; Hamiltonian systems; Spectral stability; Primary 37N10; Secondary 76B47;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the type stability of the five-vortex problem in the plane, where it is assumed that configuration is a rhombus vortex problem with a central vortex. More precisely, we suppose that the opposite vortices have the same vorticity Γ1=Γ2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _1=\Gamma _2=1$$\end{document} and Γ3=Γ4=Γ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _3=\Gamma _4=\Gamma \ne 0$$\end{document} and the vortex at the center has vorticity Γ0≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0\ne 0$$\end{document}. The stability is given in terms of the size of the rhombus and the vorticities.
引用
收藏
页码:2109 / 2123
页数:14
相关论文
共 50 条
  • [1] Stability of the Rhombus Vortex Problem with a Central Vortex
    Oliveira, Allyson
    Vidal, Claudio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (04) : 2109 - 2123
  • [2] Stacked Central Configurations in the 5-Vortex Problem
    A. C. Fernandes
    Claudio Vidal
    Journal of Nonlinear Science, 2021, 31
  • [3] Stacked Central Configurations in the 5-Vortex Problem
    Fernandes, A. C.
    Vidal, Claudio
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (05)
  • [4] STABILITY OF A VORTEX
    SINGH, PI
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (10): : 1167 - 1167
  • [5] Resonances in the Stability Problem of a Point Vortex Quadrupole on a Plane
    Kurakin, Leonid G.
    Ostrovskaya, Irina, V
    REGULAR & CHAOTIC DYNAMICS, 2021, 26 (05): : 526 - 542
  • [6] Resonances in the Stability Problem of a Point Vortex Quadrupole on a Plane
    Leonid G. Kurakin
    Irina V. Ostrovskaya
    Regular and Chaotic Dynamics, 2021, 26 : 526 - 542
  • [7] The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2013, 18 : 33 - 62
  • [8] The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2): : 33 - 62
  • [9] Enhanced vortex stability in trapped vortex combustor
    Vengadesan, S.
    Sony, C.
    AERONAUTICAL JOURNAL, 2010, 114 (1155): : 333 - 337
  • [10] On a convergence of the discrete vortex method in a vortex sheet problem
    Setukha, AV
    COMPUTATIONAL FLUID DYNAMICS '96, 1996, : 651 - 655