Graph Square Roots of Small Distance from Degree One Graphs

被引:0
|
作者
Petr A. Golovach
Paloma T. Lima
Charis Papadopoulos
机构
[1] University of Bergen,Department of Computer Science
[2] IT University of Copenhagen,Department of Computer Science
[3] University of Ioannina,Department of Mathematics
来源
Theory of Computing Systems | 2022年 / 66卷
关键词
Square root; Vertex cover; Structural parameterization;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph class H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{H}}$\end{document}, the task of the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{H}}$\end{document}-Square Root problem is to decide whether an input graph G has a square root H from H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{H}}$\end{document}. We are interested in the parameterized complexity of the problem for classes H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{H}}$\end{document} that are composed by the graphs at vertex deletion distance at most k from graphs of maximum degree at most one, that is, we are looking for a square root H such that there is a modulator S of size k such that H − S is the disjoint union of isolated vertices and disjoint edges. We show that different variants of the problems with constraints on the number of isolated vertices and edges in H − S are FPT when parameterized by k by demonstrating algorithms with running time 22O(k)⋅n5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{2^{\mathcal {O}(k)}}\cdot n^{5}$\end{document}. We further show that the running time of our algorithms is asymptotically optimal and it is unlikely that the double-exponential dependence on k could be avoided. In particular, we prove that the VC-kRoot problem, that asks whether an input graph has a square root with vertex cover of size at most k, cannot be solved in time 22o(k)⋅nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{2^{o(k)}}\cdot n^{\mathcal {O}(1)}$\end{document} unless the Exponential Time Hypothesis fails. Moreover, we point out that VC-kRoot parameterized by k does not admit a subexponential kernel unless P = NP.
引用
收藏
页码:821 / 846
页数:25
相关论文
共 50 条
  • [1] Graph Square Roots of Small Distance from Degree One Graphs
    Golovach, Petr A.
    Lima, Paloma T.
    Papadopoulos, Charis
    THEORY OF COMPUTING SYSTEMS, 2022, 66 (04) : 821 - 846
  • [2] Computing square roots of graphs with low maximum degree
    Cochefert, Manfred
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    Stewart, Anthony
    DISCRETE APPLIED MATHEMATICS, 2018, 248 : 93 - 101
  • [3] ALGORITHMS FOR SQUARE ROOTS OF GRAPHS
    LIN, YL
    SKIENA, SS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (01) : 99 - 118
  • [4] A small universal graph for bounded-degree planar graphs
    Capalbo, MR
    PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 156 - 160
  • [5] On the degree distance of a graph
    Dankelmann, P.
    Gutman, I.
    Mukwembi, S.
    Swart, H. C.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2773 - 2777
  • [6] Products of distance degree regular and distance degree injective graphs
    Huilgol, Medha Itagi
    Rajeshwari, M.
    Ulla, S. Syed Asif
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2012, 15 (4-5): : 303 - 314
  • [7] On the reciprocal degree distance of graphs
    Hua, Hongbo
    Zhang, Shenggui
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1152 - 1163
  • [8] DISTANCE DEGREE REGULAR GRAPHS
    HILANO, T
    NOMURA, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (01) : 96 - 100
  • [9] On the generalised degree distance of graphs
    Pattabiraman, K.
    Bhat, Manzoor Ahmad
    International Journal of Computational Systems Engineering, 2019, 5 (04): : 251 - 256
  • [10] DEGREE DISTANCE OF PRODUCT GRAPHS
    Paulraja, P.
    Agnes, V. S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (01)