Uncertainty Principles for the Continuous Dunkl Gabor Transform and the Dunkl Continuous Wavelet Transform

被引:0
|
作者
Hatem Mejjaoli
Nadia Sraieb
机构
[1] Faculty of Sciences of Tunis,Department of Mathematics
[2] Faculty of Sciences of Gabes,Department of Mathematics
来源
关键词
26D10; 43A32; 46C05; 46E22; Dunkl Gabor transform; Dunkl wavelet transform; uncertainty principles; reproducing kernel Hilbert spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the Dunkl operators Tj, j = 1, . . . , d, on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} and the harmonic analysis associated with these operators. We define a continuous Dunkl Gabor transform, involving the Dunkl translation operator, by proceeding as mentioned in [20] by C.Wojciech and G. Gigante. We prove a Plancherel formula, an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{k}$$\end{document} inversion formula and a weak uncertainty principle for it. Then, we show that the portion of the continuous Dunkl Gabor transform lying outside some set of finite measure cannot be arbitrarily too small. Similarly, using the basic theory for the Dunkl continuous wavelet transform introduced by K. Trimèche in [18], an analogous of this result for the Dunkl continuous wavelet transform is given. Finally, an analogous of Heisenberg’s inequality for a continuous Dunkl Gabor transform (resp. Dunkl continuous wavelet transform) is proved.
引用
收藏
页码:443 / 466
页数:23
相关论文
共 50 条