Parameterized solution to a class of sylvester matrix equations

被引:0
|
作者
Qiao Y.-P. [1 ]
Qi H.-S. [2 ]
Cheng D.-Z. [2 ]
机构
[1] Center for Control and Optimization, College of Automation Science and Engineering, South China University of Technology
[2] Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Kronecker product; linear matrix equation; Luenberger observers; parameterized solution; Sylvester matrix equation;
D O I
10.1007/s11633-010-0530-8
中图分类号
学科分类号
摘要
A class of formulas for converting linear matrix mappings into conventional linear mappings are presented. Using them, an easily computable numerical method for complete parameterized solutions of the Sylvester matrix equation AX - EXF = BY and its dual equation XA - FXE = Y C are provided. It is also shown that the results obtained can be used easily for observer design. The method proposed in this paper is universally applicable to linear matrix equations. © 2010 Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:479 / 483
页数:4
相关论文
共 50 条
  • [1] Parameterized Solution to a Class of Sylvester Matrix Equations
    Yu-Peng Qiao 1 Hong-Sheng Qi 2 Dai-Zhan Cheng 2 1 Center for Control and Optimization
    Machine Intelligence Research, 2010, (04) : 479 - 483
  • [2] Parameterized Solution to a Class of Sylvester Matrix Equations
    YuPeng Qiao HongSheng Qi DaiZhan Cheng Center for Control and OptimizationCollege of Automation Science and EngineeringSouth China University of TechnologyGuangzhou PRC Key Laboratory of Systems and ControlAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing PRC
    International Journal of Automation & Computing, 2010, 7 (04) : 479 - 483
  • [3] On the solution of parameterized Sylvester matrix equations
    Dehghani-Madiseh, Marzieh
    JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (04): : 535 - 553
  • [4] Parameterized Solution to Generalized Sylvester Matrix Equation
    Qiao Yupeng
    Qi Hongsheng
    Cheng Daizhan
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 2 - 6
  • [5] Solution to generalized sylvester matrix equations
    Wu, Ai-Guo
    Duan, Guang-Ren
    Zhou, Bin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (03) : 811 - 815
  • [6] ON THE NUMERICAL SOLUTION OF GENERALIZED SYLVESTER MATRIX EQUATIONS
    Kaabi, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (01): : 101 - 113
  • [7] ON PERIODIC SOLUTION OF GENERALIZED SYLVESTER MATRIX EQUATIONS
    Aliev, F. A.
    Larin, V. B.
    Velieva, N. I.
    Gasimova, K. G.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2017, 16 (01) : 78 - 84
  • [8] Symmetric least squares solution of a class of Sylvester matrix equations via MINIRES algorithm
    Huang, Baohua
    Ma, Changfeng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (14): : 6381 - 6404
  • [9] Approximate Solution of LR Fuzzy Sylvester Matrix Equations
    Guo, Xiaobin
    Shang, Dequan
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [10] A Verified Algorithm for the Centrosymmetric Solution of Sylvester Matrix Equations
    Sang, Haifeng
    Li, Ziyu
    Cui, Ying
    Li, Qingchun
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2015, 2015, 562 : 342 - 349