MicroRNA target site identification by integrating sequence and binding information

被引:0
|
作者
William H Majoros
Parawee Lekprasert
Neelanjan Mukherjee
Rebecca L Skalsky
David L Corcoran
Bryan R Cullen
Uwe Ohler
机构
[1] Institute for Genome Sciences and Policy,Department of Molecular Genetics and Microbiology
[2] Duke University,Department of Biostatistics and Bioinformatics
[3] Program in Computational Biology and Bioinformatics,Department of Biology
[4] Duke University,undefined
[5] Berlin Institute for Medical Systems Biology,undefined
[6] Max Delbrück Center for Molecular Medicine,undefined
[7] Duke University,undefined
[8] Duke University,undefined
[9] Humboldt University of Berlin,undefined
来源
Nature Methods | 2013年 / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The integration of microRNA target sequence features and data from cross-linking and immunoprecipitation of Argonaute proteins, implemented in the hidden Markov model–based framework MUMMIE, provides accurate prediction of microRNA targets.
引用
收藏
页码:630 / 633
页数:3
相关论文
共 50 条
  • [1] MicroRNA target site identification by integrating sequence and binding information
    Majoros, William H.
    Lekprasert, Parawee
    Mukherjee, Neelanjan
    Skalsky, Rebecca L.
    Corcoran, David L.
    Cullen, Bryan R.
    Ohler, Uwe
    NATURE METHODS, 2013, 10 (07) : 630 - +
  • [2] Identification of RNA-binding sites in proteins by integrating various sequence information
    Wang, Cui-cui
    Fang, Yaping
    Xiao, Jiamin
    Li, Menglong
    AMINO ACIDS, 2011, 40 (01) : 239 - 248
  • [3] Identification of RNA-binding sites in proteins by integrating various sequence information
    Cui-cui Wang
    Yaping Fang
    Jiamin Xiao
    Menglong Li
    Amino Acids, 2011, 40 : 239 - 248
  • [4] Flanking region sequence information to refine microRNA target predictions
    Russiachand Heikham
    Ravi Shankar
    Journal of Biosciences, 2010, 35 : 105 - 118
  • [5] Flanking region sequence information to refine microRNA target predictions
    Heikham, Russiachand
    Shankar, Ravi
    JOURNAL OF BIOSCIENCES, 2010, 35 (01) : 105 - 118
  • [6] Dual modality feature fused neural network integrating binding site information for drug target affinity prediction
    He, Haohuai
    Chen, Guanxing
    Tang, Zhenchao
    Chen, Calvin Yu-Chian
    NPJ DIGITAL MEDICINE, 2025, 8 (01):
  • [7] mirLSTM: A Deep Sequential Approach to MicroRNA Target Binding Site Prediction
    Paker, Ahmet
    Ogul, Hasan
    DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2019), 2019, 1062 : 38 - 44
  • [8] Phosphorylation Site Prediction Integrating The Position Feature With Sequence Evolution Information
    Tan Si-Qiao
    Li Qian
    Chen Yuan
    Peng Jian
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2017, 44 (12) : 1118 - 1124
  • [9] A novel fusion technology utilizing complex network and sequence information for FAD-binding site identification
    Zhang, Lichao
    Xiao, Kang
    Wang, Xueting
    Kong, Liang
    ANALYTICAL BIOCHEMISTRY, 2024, 685
  • [10] Integrating transcription factor binding site information with gene expression datasets
    Jeffery, Ian B.
    Madden, Stephen F.
    McGettigan, Paul A.
    Perriere, Guy
    Culhane, Aedin C.
    Higgins, Desmond G.
    BIOINFORMATICS, 2007, 23 (03) : 298 - 305