Data clustering using K-Means based on Crow Search Algorithm

被引:0
|
作者
K Lakshmi
N Karthikeyani Visalakshi
S Shanthi
机构
[1] Kongu Engineering College,Department of Computer Applications
[2] Government Arts and Science College,Department of Computer Science
来源
Sādhanā | 2018年 / 43卷
关键词
Data mining; cluster analysis; -Means; Particle Swarm Optimization; Crow Search Optimization algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Cluster analysis is one of the popular data mining techniques and it is defined as the process of grouping similar data. K-Means is one of the clustering algorithms to cluster the numerical data. The features of K-Means clustering algorithm are easy to implement and it is efficient to handle large amounts of data. The major problem with K-Means is the selection of initial centroids. It selects the initial centroids randomly and it leads to a local optimum solution. Recently, nature-inspired optimization algorithms are combined with clustering algorithms to obtain the global optimum solution. Crow Search Algorithm (CSA) is a new population-based metaheuristic optimization algorithm. This algorithm is based on the intelligent behaviour of the crows. In this paper, CSA is combined with the K-Means clustering algorithm to obtain the global optimum solution. Experiments are conducted on benchmark datasets and the results are compared to those from various clustering algorithms and optimization-based clustering algorithms. Also the results are evaluated with internal, external and statistical experiments to prove the efficiency of the proposed algorithm.
引用
收藏
相关论文
共 50 条
  • [1] Data clustering using K-Means based on Crow Search Algorithm
    Lakshmi, K.
    Visalakshi, N. Karthikeyani
    Shanthi, S.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (11):
  • [2] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [3] A K-means Based Genetic Algorithm for Data Clustering
    Pizzuti, Clara
    Procopio, Nicola
    INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 211 - 222
  • [4] IMPROVEMENT IN K-MEANS CLUSTERING ALGORITHM FOR DATA CLUSTERING
    Rajeswari, K.
    Acharya, Omkar
    Sharma, Mayur
    Kopnar, Mahesh
    Karandikar, Kiran
    1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 367 - 369
  • [5] A k-means based clustering algorithm
    Bloisi, Domenico Daniele
    Locchi, Luca
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 109 - 118
  • [6] NEW ALGORITHM FOR CLUSTERING DISTRIBUTED DATA USING K-MEANS
    Khedr, Ahmed M.
    Bhatnagar, Raj K.
    COMPUTING AND INFORMATICS, 2014, 33 (04) : 943 - 964
  • [7] Using K-Means Clustering Algorithm for Handling Data Precision
    Suganthi, P.
    Kala, K.
    Balasubramanian, C.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [8] Multi group sparrow search algorithm based on K-means clustering
    Yan S.
    Liu W.
    Yang P.
    Wu F.
    Yan Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (02): : 508 - 518
  • [9] An improved K-Means text clustering algorithm based on Local Search
    Liu, Xiangwei
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 11578 - 11581
  • [10] The fast clustering algorithm for the big data based on K-means
    Xie, Ting
    Zhang, Taiping
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (06)