Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions

被引:0
|
作者
Sihua Liang
Jihui Zhang
机构
[1] Changchun Normal University,College of Mathematics
[2] Nanjing Normal University,Institute of Mathematics, School of Mathematical Science
来源
Annali di Matematica Pura ed Applicata | 2013年 / 192卷
关键词
(; )-Laplacian; Generalized Lebesgue-Sobolev spaces; Nonlinear boundary conditions; Concentration-compactness principle; 35J60; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of infinitely many small solutions to the following quasilinear elliptic equation −Δp(x)u +  |u|p(x)-2u =  f (x, u) in a smooth bounded domain Ω of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} with nonlinear boundary conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\nabla u|^{p-2}\frac{\partial u}{\partial\nu} = |u|^{{q(x)-2}}u}$$\end{document} . We also assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{q(x) = p^\ast(x)\}\neq \emptyset}$$\end{document} , where p*(x) =  Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountain-pass lemma due to Kajikiya, and property of these solutions is also obtained.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [1] Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions
    Liang, Sihua
    Zhang, Jihui
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (01) : 1 - 16
  • [2] Infinitely many bounded solutions for the p-Laplacian with nonlinear boundary conditions
    Francesca Faraci
    Antonio Iannizzotto
    Csaba Varga
    Monatshefte für Mathematik, 2011, 163 : 25 - 38
  • [3] Infinitely many bounded solutions for the p-Laplacian with nonlinear boundary conditions
    Faraci, Francesca
    Iannizzotto, Antonio
    Varga, Csaba
    MONATSHEFTE FUR MATHEMATIK, 2011, 163 (01): : 25 - 38
  • [4] Existence of infinitely many weak solutions for the p-Laplacian with nonlinear boundary conditions
    Zhao, Ji-Hong
    Zhao, Pei-Hao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (04) : 1343 - 1355
  • [5] INFINITELY MANY WEAK SOLUTIONS FOR A p-LAPLACIAN EQUATION WITH NONLINEAR BOUNDARY CONDITIONS
    Zhao, Ji-Hong
    Zhao, Pei-Hao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [6] Infinitely Many Weak Solutions of the p-Laplacian Equation with Nonlinear Boundary Conditions
    Lu, Feng-Yun
    Deng, Gui-Qian
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [7] EXISTENCE OF INFINITELY MANY SOLUTIONS FOR THE P-LAPLACIAN EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS
    Zhu, Lijun
    Deng, Shao-Gao
    2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 255 - 257
  • [8] Infinitely Many Solutions for Discrete Boundary Value Problems with the (p, q)-Laplacian Operator
    Zhang, Zhuomin
    Zhou, Zhan
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [9] Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the p(x)-Laplacian Operator
    Ghanmi, A.
    Mbarki, L.
    Saoudi, K.
    MATHEMATICAL NOTES, 2023, 113 (1-2) : 172 - 181
  • [10] Existence of infinitely many solutions for a class of difference equations with boundary value conditions involving p(k)-Laplacian operator
    Moghadam, M. Khaleghi
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):