The temperature dependence of heat capacity and relaxation time for a second-order ferroelectric phase transition

被引:0
|
作者
S. A. Romanchuk
机构
[1] Moscow State University,
来源
Technical Physics Letters | 2000年 / 26卷
关键词
Phase Transition; Distribution Function; Relaxation Time; Heat Capacity; Continuous Function;
D O I
暂无
中图分类号
学科分类号
摘要
The simplest ferroelectric model is used to calculate the temperature dependence of heat capacity and relaxation time for all values of temperature including the critical point. The description of a second-order phase transition is based on a kinetic equation for the distribution function of an internal parameter suggested by Klimontovich [1–3]. A comparison is made between the results of the heat capacity calculation by the Landau theory and that based on the Boltzmann distribution, which is an equilibrium solution of the kinetic equation. The heat capacity and relaxation time are continuous functions in the entire temperature range including the critical point. Both analytical and numerical calculations are performed, and a comparison is made with the estimates previously obtained by Klimontovich using the same approach.
引用
收藏
页码:131 / 134
页数:3
相关论文
共 50 条
  • [1] The temperature dependence of heat capacity and relaxation time for a second-order ferroelectric phase transition
    Romanchuk, SA
    TECHNICAL PHYSICS LETTERS, 2000, 26 (02) : 131 - 134
  • [2] Temperature dependence of the second-order susceptibility in calamitic ferroelectric liquid crystals
    Pereda, N
    Folcia, CL
    Etxebarria, J
    Ortega, J
    Ros, MB
    LIQUID CRYSTALS, 1998, 24 (03) : 451 - 456
  • [3] Simulation of boundary condition influence in a second-order ferroelectric phase transition
    Cao, WW
    Tavener, S
    Xie, SM
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (10) : 5739 - 5746
  • [4] SECOND-ORDER PHASE-TRANSITION IN 3-DIMENSIONAL MODEL OF A FERROELECTRIC
    RYAZANOV, GV
    SOVIET PHYSICS JETP-USSR, 1972, 34 (06): : 1367 - &
  • [5] SINGLE-DOMAIN POLARIZATION OF A FERROELECTRIC HAVING A SECOND-ORDER PHASE TRANSITION
    CHENSKII, EV
    SOVIET PHYSICS SOLID STATE,USSR, 1970, 12 (02): : 446 - +
  • [6] Kinetics of the Formation of Ferroelectric Domain Structures upon Second-Order Phase Transition
    Mazur, Olga
    Stefanovich, Leonid
    PROCEEDINGS OF THE 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON NANOMATERIALS: APPLICATIONS & PROPERTIES (NAP-2020), 2020,
  • [7] EFFECT OF SAMPLE INHOMOGENEITY ON BEHAVIOR OF HEAT CAPACITY NEAR A SECOND-ORDER PHASE-TRANSITION POINT
    MIKULINS.MA
    FRENKEL, ZM
    SOVIET PHYSICS SOLID STATE,USSR, 1971, 13 (05): : 1199 - &
  • [8] THEORY OF RELAXATION PHENOMENA NEAR SECOND-ORDER PHASE-TRANSITION POINT
    TANAKA, T
    BARRY, JH
    MEIJER, PHE
    JOURNAL OF CHEMICAL PHYSICS, 1962, 37 (07): : 1397 - &
  • [9] Second-order phase transition of FeS under high pressure and temperature
    Kusaba, K
    Utsumi, W
    Yamakata, M
    Shimomura, O
    Syono, Y
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2000, 61 (09) : 1483 - 1487
  • [10] Second-order phase transition of high isotactic polypropylene at high temperature
    Gu, FM
    Hikosaka, M
    Toda, A
    Ghosh, SK
    Yamazaki, S
    Arakaki, M
    Yamada, K
    POLYMER, 2002, 43 (04) : 1473 - 1481