Let X1,X2 be independent geometric random variables with parameters p1,p2, respectively, and Y1,Y2 be i.i.d. geometric random variables with common parameter p. It is shown that X2:2, the maximum order statistic from X1,X2, is larger than Y2:2, the second order statistic from Y1,Y2, in terms of the hazard rate order [usual stochastic order] if and only if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p\geq \tilde{p}$\end{document}, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{p}=(p_{1}p_{2})^{\frac{1}{2}}$\end{document} is the geometric mean of (p1,p2). This result answers an open problem proposed recently by Mao and Hu (Probab. Eng. Inf. Sci. 24:245–262, 2010) for the case when n=2.