On maximum order statistics from heterogeneous geometric variables

被引:0
|
作者
Peng Zhao
Feng Su
机构
[1] Jiangsu Normal University,School of Mathematical Sciences
[2] Hengyang Normal University,Department of Mathematics and Computational Science
来源
关键词
Hazard rate order; Usual stochastic order; Exponential distribution; Geometric distribution; Parallel system;
D O I
暂无
中图分类号
学科分类号
摘要
Let X1,X2 be independent geometric random variables with parameters p1,p2, respectively, and Y1,Y2 be i.i.d. geometric random variables with common parameter p. It is shown that X2:2, the maximum order statistic from X1,X2, is larger than Y2:2, the second order statistic from Y1,Y2, in terms of the hazard rate order [usual stochastic order] if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq \tilde{p}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{p}=(p_{1}p_{2})^{\frac{1}{2}}$\end{document} is the geometric mean of (p1,p2). This result answers an open problem proposed recently by Mao and Hu (Probab. Eng. Inf. Sci. 24:245–262, 2010) for the case when n=2.
引用
收藏
页码:215 / 223
页数:8
相关论文
共 50 条
  • [1] On maximum order statistics from heterogeneous geometric variables
    Zhao, Peng
    Su, Feng
    ANNALS OF OPERATIONS RESEARCH, 2014, 212 (01) : 215 - 223
  • [2] On extreme order statistics from heterogeneous Weibull variables
    Zhao, Peng
    Zhang, Yiying
    Qiao, Jianfei
    STATISTICS, 2016, 50 (06) : 1376 - 1386
  • [3] MRL ordering of largest order statistics from heterogeneous scale variables
    Haidari, Abedin
    Sattari, Mostafa
    Kia , Ghobad Saadat
    Balakrishnan, Narayanaswamy
    STATISTICS, 2023, 57 (02) : 354 - 374
  • [4] Comparisons of order statistics from heterogeneous negative binomial variables with applications
    Chen, Jianbin
    Zhang, Yiying
    Zhao, Peng
    STATISTICS, 2019, 53 (05) : 990 - 1011
  • [5] A stochastic inequality for the largest order statistics from heterogeneous gamma variables
    Zhao, Peng
    Balakrishnan, N.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 129 : 145 - 150
  • [6] HAZARD RATE ORDERING OF THE LARGEST ORDER STATISTICS FROM GEOMETRIC RANDOM VARIABLES
    Kim, Bara
    Kim, Jeongsim
    JOURNAL OF APPLIED PROBABILITY, 2018, 55 (02) : 652 - 658
  • [7] Stochastic comparisons of order statistics from heterogeneous random variables with Archimedean copula
    M. Mesfioui
    M. Kayid
    S. Izadkhah
    Metrika, 2017, 80 : 749 - 766
  • [8] On usual multivariate stochastic ordering of order statistics from heterogeneous beta variables
    Balakrishnan, Narayanaswamy
    Barmalzan, Ghobad
    Haidari, Abedin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 127 : 147 - 150
  • [9] Stochastic comparisons of order statistics from heterogeneous random variables with Archimedean copula
    Mesfioui, M.
    Kayid, M.
    Izadkhah, S.
    METRIKA, 2017, 80 (6-8) : 749 - 766
  • [10] Ordering results of extreme order statistics from heterogeneous Gompertz-Makeham random variables
    Majumder, Priyanka
    Ghosh, Shyamal
    Mitra, Murari
    STATISTICS, 2020, 54 (03) : 595 - 617