Kato’s first representation theorem;
q-closed and solvable sesquilinear forms;
Compatible norms;
Banach–Gelfand triplet;
Primary 47A07;
Secondary 47A30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
New results are added to the paper (Di Bella and Trapani in J Math Anal Appl 451:64–83, 2017) about q-closed and solvable sesquilinear forms. The structure of the Banach space D[||·||Ω]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {D}[||\cdot ||_\Omega ]$$\end{document} defined on the domain D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {D}$$\end{document} of a q-closed sesquilinear form Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document} is unique up to isomorphism, and the adjoint of a sesquilinear form has the same property of q-closure or of solvability. The operator associated to a solvable sesquilinear form is the greatest which represents the form and it is self-adjoint if, and only if, the form is symmetric. We give more criteria of solvability for q-closed sesquilinear forms. Some of these criteria are related to the numerical range, and we analyse in particular the forms which are solvable with respect to inner products. The theory of solvable sesquilinear forms generalises those of many known sesquilinear forms in literature.
机构:
North-Caucasian Institute of Mining and Metallurgy named after K. L. Khetagurov (State Technological University), ul. Nikolaeva 44, VladikavkazNorth-Caucasian Institute of Mining and Metallurgy named after K. L. Khetagurov (State Technological University), ul. Nikolaeva 44, Vladikavkaz
Kalinichenko A.V.
Maliev I.N.
论文数: 0引用数: 0
h-index: 0
机构:
North-Ossetian State University, ul. Vatutina 44–46, VladikavkazNorth-Caucasian Institute of Mining and Metallurgy named after K. L. Khetagurov (State Technological University), ul. Nikolaeva 44, Vladikavkaz
Maliev I.N.
Pliev M.A.
论文数: 0引用数: 0
h-index: 0
机构:
Southern Mathematical Institute, Vladikavkaz Scientific Center of the Russian Academy of Sciences, ul. Markusa 22, VladikavkazNorth-Caucasian Institute of Mining and Metallurgy named after K. L. Khetagurov (State Technological University), ul. Nikolaeva 44, Vladikavkaz