Extracting the jet transport coefficient from hadron suppressions by confronting current NLO parton fragmentation functions

被引:0
|
作者
Qing-Fei Han
Man Xie
Han-Zhong Zhang
机构
[1] Central China Normal University,Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics
[2] South China Normal University,Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter
[3] South China Normal University,Guangdong
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nuclear modification factors of single hadrons and dihadrons at large transverse momentum (pT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\mathrm{T}}$$\end{document}) in high-energy heavy-ion collisions are studied in a next-to-leading-order (NLO) perturbative QCD parton model. Parton fragmentation functions (FFs) in A+A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+A$$\end{document} collisions are modified due to jet energy loss which is proportional to the jet transport coefficient q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} characterizing the interaction between the parton jet and the produced medium. By confronting 6 current sets of NLO parton FFs for large pT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\mathrm{T}}$$\end{document} hadron productions, we extract q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} quantitatively via a global fit to data for both single hadron and dihadron suppressions and obtain q^/T3=4.74-6.72\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}/T^3 = 4.74 - 6.72$$\end{document} at T=370\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 370$$\end{document} MeV in central Au+Au\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Au+Au$$\end{document} collisions at sNN=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_{\mathrm{NN}}}=200$$\end{document} GeV, and q^/T3=3.07-3.98\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}/T^3 = 3.07 - 3.98$$\end{document} at T=480\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 480$$\end{document} MeV in central Pb+Pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pb+Pb$$\end{document} collisions at sNN=2.76\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_{\mathrm{NN}}}=2.76$$\end{document} TeV. The numerical results show that the uncertainties for q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} extraction are brought by the different contributions of gluon-to-hadron in the six sets of FFs due to gluon energy loss being 9/4 times of quark energy loss.
引用
收藏
相关论文
共 13 条
  • [1] Extracting the jet transport coefficient from hadron suppressions by confronting current NLO parton fragmentation functions
    Han, Qing-Fei
    Xie, Man
    Zhang, Han-Zhong
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (09):
  • [2] Confronting current NLO parton fragmentation functions with inclusive charged-particle spectra at hadron colliders
    d'Enterria, David
    Eskola, Kari J.
    Helenius, Ilkka
    Paukkunen, Hannu
    NUCLEAR PHYSICS B, 2014, 883 : 615 - 628
  • [3] Extracting αs from scaling violations in light-hadron fragmentation functions
    Kniehl, Bernd A.
    MODERN PHYSICS LETTERS A, 2016, 31 (08)
  • [4] A METHOD FOR EXTRACTING GLUON-FRAGMENTATION FUNCTIONS FROM JET-EVENTS
    NACHTMANN, O
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1983, 16 (03): : 257 - 258
  • [5] Determination of αs at NLO*+NNLL from a global fit of the low-z parton-to-hadron fragmentation functions in e+ e- and DIS collisions
    Perez-Ramos, Redamy
    d'Enterria, David
    XLIV INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS (ISMD 2014), 2015, 90
  • [6] Extracting the jet transport coefficient of cold nuclear matter from world data
    Ru, Peng
    Kang, Zhong-Bo
    Wang, Enke
    Xing, Hongxi
    Zhang, Ben-Wei
    NUCLEAR PHYSICS A, 2021, 1005
  • [7] Extracting jet transport coefficient via single hadron and dihadron productions in high-energy heavy-ion collisions
    Xie, Man
    Wei, Shu-Yi
    Qin, Guang-You
    Zhang, Han-Zhong
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (07):
  • [8] Extracting jet transport coefficient via single hadron and dihadron productions in high-energy heavy-ion collisions
    Man Xie
    Shu-Yi Wei
    Guang-You Qin
    Han-Zhong Zhang
    The European Physical Journal C, 2019, 79
  • [9] Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions
    Burke, Karen M.
    Buzzatti, Alessandro
    Chang, Ningbo
    Gale, Charles
    Gyulassy, Miklos
    Heinz, Ulrich
    Jeon, Sangyong
    Majumder, Abhijit
    Mueller, Berndt
    Qin, Guang-You
    Schenke, Bjoern
    Shen, Chun
    Wang, Xin-Nian
    Xu, Jiechen
    Young, Clint
    Zhang, Hanzhong
    PHYSICAL REVIEW C, 2014, 90 (01):
  • [10] Global constraint on the jet transport coefficient from single-hadron, dihadron, and γ-hadron spectra in high-energy heavy-ion collisions
    Xie, Man
    Ke, Weiyao
    Zhang, Hanzhong
    Wang, Xin-Nian
    PHYSICAL REVIEW C, 2024, 109 (06)