Existence of Nondecreasing and Continuous Solutions of an Integral Equation with Linear Modification of the Argument

被引:0
|
作者
J. CABALLERO
B. LÓPEZ
K. SADARANGANI
机构
[1] Universidad de Las Palmas de Gran Canaria,Departamento de Matemáticas
[2] Campus de Tafira Baja,undefined
关键词
measure of noncompactness; fixed point theorem; nondecreasing solutions; 45M99; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
We use a technique associated with measures of noncompactness to prove the existence of nondecreasing solutions to an integral equation with linear modification of the argument in the space C[0, 1]. In the last thirty years there has been a great deal of work in the field of differential equations with a modified argument. A special class is represented by the differential equation with affine modification of the argument which can be delay differential equations or differential equations with linear modifications of the argument. In this case we study the following integral equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x{\left( t \right)} = a{\left( t \right)} + {\left( {Tx} \right)}{\left( t \right)}{\int_0^{\sigma {\left( t \right)}} {u{\left( {t,s,x{\left( s \right)},x{\left( {\lambda s} \right)}} \right)}ds} }\;0 < \lambda < 1 $$\end{document} which can be considered in connection with the following Cauchy problem x'(t) = u(t, s, x(t), x(λt)), t ∈ [0, 1], 0 < λ < 1 x(0) = u0.
引用
收藏
页码:1719 / 1728
页数:9
相关论文
共 50 条
  • [1] Existence of nondecreasing and continuous solutions of an integral equation with linear modification of the argument
    Caballero, J.
    Lopez, B.
    Sadarangani, K.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (09) : 1719 - 1728
  • [2] Existence of Nondecreasing and Continuous Solutions of an Integral Equation with Linear Modification of the Argument
    J.CABALLERO
    B.LóPEZ
    K.SADARANGANI
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (09) : 1719 - 1728
  • [3] Existence of nondecreasing and continuous solutions for a nonlinear integral equation with supremum in the kernel
    Caballero, J.
    Lopez, B.
    Sadarangani, K.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (02): : 195 - 205
  • [4] Existence of nondecreasing solutions of a quadratic integral equation of Volterra type
    Zhu, Tao
    Li, Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 214 - 220
  • [5] EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A PERTURBED FRACTIONAL FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT
    Darwish, Mohamed Abdalla
    Henderson, Johnny
    O'Regan, Donal
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 539 - 553
  • [6] A FREDHOLM INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT
    Muresan, Viorica
    APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 199 - 205
  • [7] NONDECREASING SOLUTIONS OF A QUADRATIC INTEGRAL EQUATION OF VOLTERRA TYPE
    Zhu, Tao
    Song, Chao
    Li, Gang
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (05): : 1715 - 1725
  • [8] On the Existence of the Solutions of a Fredholm Integral Equation with a Modified Argument in Holder Spaces
    Ersoy, Merve Temizer
    Furkan, Hasan
    SYMMETRY-BASEL, 2018, 10 (10):
  • [9] Nondecreasing solutions of a quadratic integral equation of Urysohn type
    El-Sayed, WG
    Rzepka, B
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (6-7) : 1065 - 1074
  • [10] Existence of Nondecreasing Positive Solutions for a System of Singular Integral Equations
    Aghajani, Asadollah
    Jalilian, Yaghoub
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (04) : 563 - 576