Inverted finite elements for div-curl systems in the whole space

被引:0
|
作者
Tahar Z. Boulmezaoud
Keltoum Kaliche
Nabil Kerdid
机构
[1] Université de Versailles Saint-Quentin-en-Yvelines - Université Paris-Saclay 45,Laboratoire de Mathématiques de Versailles
[2] Al Imam Bin Saud University,Department of Mathematics and Statistics
[3] College of Sciences,undefined
来源
关键词
Inverted finite elements; Div-curl systems; Vector potentials; Unbounded domains; 74S30; 65N30; 65N99; 74S05; 65Z05;
D O I
暂无
中图分类号
学科分类号
摘要
We use inverted finite element method (IFEM) for computing three-dimensional vector potentials and for solving div-curl systems in the whole space ℝ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{3}$\end{document}. IFEM is substantially different from the existing approaches since it is a non truncature method which preserves the unboundness of the domain. After developping the method, we analyze its convergence in term of weighted norms. We then give some three-dimensional numerical results which demonstrate the efficiency and the accuracy of the method and confirm its convergence.
引用
收藏
页码:1469 / 1489
页数:20
相关论文
共 50 条
  • [1] Inverted finite elements for div-curl systems in the whole space
    Boulmezaoud, Tahar Z.
    Kaliche, Keltoum
    Kerdid, Nabil
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (06) : 1469 - 1489
  • [2] A div-curl lemma for edge elements
    Christiansen, SH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) : 116 - 126
  • [3] Div-curl fields of finite distortion
    Iwaniec, T
    Sbordone, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 729 - 734
  • [4] A DIV-CURL DECOMPOSITION FOR THE LOCAL HARDY SPACE
    Chang, Der-Chen
    Dafni, Galia
    Yue, Hong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) : 3369 - 3377
  • [5] A new approximation technique for div-curl systems
    Bramble, JH
    Pasciak, JE
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 1739 - 1762
  • [6] A mixed method for axisymmetric div-curl systems
    Copeland, Dylan M.
    Gopalakrishnan, Jayadeep
    Pasciak, Joseph E.
    MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 1941 - 1965
  • [7] A remark on the div-curl lemma
    Gilles Lemarie-Rieusset, Pierre
    STUDIA MATHEMATICA, 2012, 210 (01) : 77 - 98
  • [8] On a generalization of the "div-curl lemma"
    Gasser, Ingenuin
    Marcati, Pierangelo
    OSAKA JOURNAL OF MATHEMATICS, 2008, 45 (01) : 211 - 214
  • [9] A note on div-curl lemmata
    Auscher, P
    Russ, E
    Tchamitchian, P
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (08) : 511 - 516
  • [10] DIV-CURL vector quasi-interpolation on a finite domain
    Chen, F
    Suter, D
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (1-2) : 179 - 204