On s-extremal Riemann surfaces of even genus

被引:0
|
作者
Ewa Kozłowska-Walania
机构
[1] University of Gdańsk,Institute of Mathematics, Faculty of Mathematics, Physics and Informatics
来源
Revista Matemática Complutense | 2022年 / 35卷
关键词
Riemann surface; Symmetry of a Riemann surface; Real form; Automorphisms of Riemann surface; Fuchsian groups; Riemann uniformization theorem; Separating symmetry; Primary 30F99; 14H37; Secondary 20F;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Riemann surfaces of even genus g with the action of the group Dn×Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_n\times \mathbb {Z}_2$$\end{document}, with n even. These surfaces have the maximal number of 4 non-conjugate symmetries and shall be called s-extremal. We show various results for such surfaces, concerning the total number of ovals, topological types of symmetries, hyperellipticity degree and the minimal genus problem. If in addition an s-extremal Riemann surface has the maximal total number of ovals, then it shall simply be called extremal. In the main result of the paper we find all the families of extremal Riemann surfaces of even genera, depending on if one of the symmetries is fixed-point free or not.
引用
收藏
页码:159 / 178
页数:19
相关论文
共 50 条