Singularities of two-dimensional Nijenhuis operators

被引:0
|
作者
Dinmukhammed Akpan
机构
[1] Lomonosov Moscow State University,Faculty of Mechanics and Mathematics
[2] Moscow Center of Fundamental and Applied Mathematics,undefined
来源
关键词
Nijenhuis operator; Singular point; Integrable systems; Nijenhuis geometry; 37K05; 37K06; 37K10; 37K25; 37K50; 53B10; 53A20; 53B20; 53B30; 53B50; 53B99; 53D17;
D O I
暂无
中图分类号
学科分类号
摘要
A Nijenhuis operator L is a (1, 1)-tensor field on a smooth manifold M with vanishing Nijenhuis torsion NL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal N_L}}$$\end{document}. At each point x∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in M$$\end{document}, the algebraic type of L(x) is characterized by its Jordan normal form. In this paper we study singularities of a two-dimensional Nijenhuis operator in the case when its trace trL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{tr}\,}}L$$\end{document} has a non-zero differential at the singular point. A description of such singularities reduces to studying the smoothness of some function which is a fraction depending on partial derivatives of the determinant of L. We completely describe singularities for some special classes of functions. We also obtained interesting examples of Nijenhuis operators and their singularities.
引用
收藏
页码:1328 / 1340
页数:12
相关论文
共 50 条