Cut-free proof systems for logics of weak excluded middle

被引:12
|
作者
A. Ciabattoni
D. M. Gabbay
N. Olivetti
机构
[1] Dipartimento di Informatica,
[2] Università di Milano,undefined
[3] Via Comelico,undefined
[4] 39,undefined
[5] Milano,undefined
[6] Italy e-mail: ciabatto@dsi.unimi.it,undefined
[7] Department of Computer Science,undefined
[8] King’s College,undefined
[9] Strand,undefined
[10] London WC2R 2LS,undefined
[11] UK e-mail: dg@dcs.kcl.ac.uk,undefined
[12] Departimento di Informatica,undefined
[13] Università di Torino,undefined
[14] Corso Svizzera,undefined
[15] 185,undefined
[16] Torino,undefined
[17] Italy e-mail: olivetti@di.unito.it,undefined
关键词
Weak Form; Proof System; Logical System; Intuitionistic Logic; Linear Logic;
D O I
10.1007/s005000050047
中图分类号
学科分类号
摘要
 In this work we perform a proof-theoretical investigation of some logical systems in the neighborhood of substructural, intermediate and many-valued logics. The common feature of the logics we consider is that they satisfy some weak forms of the excluded-middle principle. We first propose a cut-free hypersequent calculus for the intermediate logic LQ, obtained by adding the axiom *A∨**A to intuitionistic logic. We then propose cut-free calculi for systems Wn, obtained by adding the axioms *A∨(A ⊕ ⋯ ⊕ A) (n−1 times) to affine linear logic (without exponential connectives). For n=3, the system Wn coincides with 3-valued Łukasiewicz logic. For n>3, Wn is a proper subsystem of n-valued Łukasiewicz logic. Our calculi can be seen as a first step towards the development of uniform cut-free Gentzen calculi for finite-valued Łukasiewicz logics.
引用
收藏
页码:147 / 156
页数:9
相关论文
共 50 条