Hyperreflexivity of the derivation space of some group algebras

被引:0
|
作者
J. Alaminos
J. Extremera
A. R. Villena
机构
[1] Universidad de Granada,Departamento de Análisis Matemático, Facultad de Ciencias
来源
Mathematische Zeitschrift | 2010年 / 266卷
关键词
Amenable Banach algebra; Amenable group; Group algebra; Derivation; Approximate derivation; Approximate derivation on zero products; Hyperreflexive linear space; Primary 47B47; 47B48; Secondary 43A20; 46H05;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a continuous linear operator on a Banach algebra A. We address the question of whether the constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm sup}\{||aT(b)c||: a, b, c \in A, \, ab = bc = 0, ||a|| = ||b|| = ||c||=1\}}$$\end{document} being small implies that the distance from T to the space Der(A) of all continuous derivations on A is small. We show that this is the case for amenable group algebras. As a consequence, we deduce that Der(L1(G)) is hyperreflexive for each amenable group in [SIN].
引用
收藏
页码:571 / 582
页数:11
相关论文
共 50 条