The orbit of asteroid (99942) Apophis as determined from optical and radar observations

被引:0
|
作者
T. A. Vinogradova
O. M. Kochetova
Yu. A. Chernetenko
V. A. Shor
E. I. Yagudina
机构
[1] Russian Academy of Sciences,Institute of Applied Astronomy
来源
Solar System Research | 2008年 / 42卷
关键词
95.10.Eg; 96.30.Ys;
D O I
暂无
中图分类号
学科分类号
摘要
The results of improving the orbit accuracy for the asteroid Apophis and the circumstances of its approach to Earth in 2029 are described. Gravitational perturbations from all of the major planets and Pluto, Ceres, Pallas, and Vesta are taken into account in the equations of motion of the asteroid. Relativistic perturbations from the Sun and perturbations due to the oblateness of the Sun and Earth and due to the light pressure are also included in the model. Perturbations from the Earth and Moon are considered separately. The coordinates of the perturbing bodies are calculated using DE405. The phase correction and the gravitational deflection of light are taken into account. The numerical integration of the equations of motion and equations in variations is performed by the 15th-order Everhart method. The error of the numerical integration over the 2005–2029 interval, estimated using forward and backward computations, is not more than 3 × 10−11 AU. Improved coordinates and velocities at epoch JD2454200.5 (April 10, 2007) were obtained applying the weighted leastsquares fit. For the period from March 15, 2004, to August 16, 2006, 989 optical and 7 radar observations were used. The resulting system represents the optical observations with an error of 0.37 (66 conditional equations were rejected). The residuals of the radar observations are an order, or more, smaller than their errors. The system of Apophis’ elements and the estimates of their precision obtained in this study are in perfect agreement with the results published by other authors. The minimum Apophis-Earth distance is about 38 200 km on April 13, 2029. This estimate agrees to within 20 km with those calculated based on other published systems of elements. The effect of some model components on the minimum distance is estimated.
引用
收藏
页码:271 / 280
页数:9
相关论文
共 50 条
  • [1] The orbit of asteroid (99942) Apophis as determined from optical and radar observations
    Vinogradova, T. A.
    Kochetova, O. M.
    Chernetenko, Yu. A.
    Shor, V. A.
    Yagudina, E. I.
    SOLAR SYSTEM RESEARCH, 2008, 42 (04) : 271 - 280
  • [2] Thermal infrared observations of asteroid (99942) Apophis with Herschel
    Mueller, T. G.
    Kiss, C.
    Scheirich, P.
    Pravec, P.
    O'Rourke, L.
    Vilenius, E.
    Altieri, B.
    ASTRONOMY & ASTROPHYSICS, 2014, 566
  • [4] NEOWISE Observations of the Potentially Hazardous Asteroid (99942) Apophis
    Satpathy, Akash
    Mainzer, Amy
    Masiero, Joseph R.
    Linder, Tyler
    Cutri, Roc M.
    Wright, Edward L.
    Pittichova, Jana
    Grav, Tommy
    Kramer, Emily
    PLANETARY SCIENCE JOURNAL, 2022, 3 (05):
  • [5] The study of the evolution of the orbit of the asteroid 99942 Apophis in the interval from 2005 to 2200
    Zausaev, A. F.
    Altynbaev, F. Kh.
    Zausaev, A. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2006, (42): : 188 - 190
  • [6] On the problem of orbit correction for the near-Earth (99942) asteroid Apophis
    Ivashkin, V. V.
    Stikhno, C. A.
    DOKLADY PHYSICS, 2008, 53 (04) : 228 - 232
  • [7] On the problem of orbit correction for the near-Earth (99942) asteroid Apophis
    V. V. Ivashkin
    C. A. Stikhno
    Doklady Physics, 2008, 53 : 228 - 232
  • [8] Peculiarities of the motion of asteroid 99942 Apophis
    L. L. Sokolov
    A. A. Bashakov
    N. P. Pitjev
    Solar System Research, 2008, 42 : 18 - 27
  • [9] Peculiarities of the motion of asteroid 99942 Apophis
    Sokolov, L. L.
    Bashakov, A. A.
    Pitjev, N. P.
    SOLAR SYSTEM RESEARCH, 2008, 42 (01) : 18 - 27
  • [10] On the accuracy of the orbit of asteroid (99942) APOPHIS at the time of its encounter with the Earth in 2029
    Zabotin, A. S.
    Medvedev, Yu. D.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2009, 35 (04): : 278 - 285