Higher class number;
Galois extension;
Tame kernel;
19E15;
19F27;
11R20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let F/Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F/{\mathbb {Q}}$$\end{document} be a complex Galois extension with Galois group V4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_4$$\end{document} or S3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_3$$\end{document}. This paper proves that certain quotients of higher class numbers corresponding to the intermediate fields take on a determined finite set of values, assuming the motivic formulation of the Lichtenbaum conjecture.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
机构:
St.Petersburg Department of the Steklov Mathematical Institute, St.PetersburgSt.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg