Higher Class Numbers in Extensions of Number Fields

被引:0
|
作者
Haiyan Zhou
机构
[1] Nanjing Normal University,School of Mathematical Sciences
关键词
Higher class number; Galois extension; Tame kernel; 19E15; 19F27; 11R20;
D O I
暂无
中图分类号
学科分类号
摘要
Let F/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F/{\mathbb {Q}}$$\end{document} be a complex Galois extension with Galois group V4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_4$$\end{document} or S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_3$$\end{document}. This paper proves that certain quotients of higher class numbers corresponding to the intermediate fields take on a determined finite set of values, assuming the motivic formulation of the Lichtenbaum conjecture.
引用
收藏
页码:897 / 907
页数:10
相关论文
共 50 条