机构:Max Planck Institute for Mathematics,Department of Mathematics
Eugenia Rosu
机构:
[1] Max Planck Institute for Mathematics,Department of Mathematics
[2] University of Arizona,undefined
来源:
Mathematische Annalen
|
2020年
/
378卷
关键词:
Primary 11G40;
11F67;
Secondary 14H52;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We are interested in finding for which positive integers D we have rational solutions for the equation x3+y3=D.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^3+y^3=D.$$\end{document} The aim of this paper is to compute the value of the L-function L(ED,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L(E_D, 1)$$\end{document} for the elliptic curves ED:x3+y3=D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_D: x^3+y^3=D$$\end{document}. For the case of p prime p≡1mod9\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p\equiv 1\mod 9$$\end{document}, two formulas have been computed by Rodriguez-Villegas and Zagier. We have computed formulas that relate L(ED,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L(E_D, 1)$$\end{document} to the square of a trace of a modular function at a CM point. This offers a criterion for when the integer D is the sum of two rational cubes. Furthermore, when L(ED,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L(E_D, 1)$$\end{document} is nonzero we get a formula for the number of elements in the Tate–Shafarevich group and we show that this number is a square when D is a norm in Q[-3]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Q}}[\sqrt{-3}]$$\end{document}.