35B05;
35B65;
35J70;
-Laplace operator;
geometric and qualitative properties of the solutions;
regularity of the solutions;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the Dirichlet problem \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$-\Delta_{m}(u) = f(u)$$
\end{document} in Ω with zero Dirichlet boundary conditions. We prove local summability properties of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\frac{1}{\mid Du \mid}$$
\end{document} and we exploit these results to give geometric characterizations of the critical set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$Z = \{x \in \Omega | Du(x) = 0\}$$
\end{document}. We extend to the case of changing sign nonlinearities some results known in the case f(s) > 0 for s > 0.
机构:
Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
Ho Chi Minh City Univ Pedag, Ho Chi Minh City, VietnamTechnion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
Phuoc-Tai Nguyen
Hoang-Hung Vo
论文数: 0引用数: 0
h-index: 0
机构:
CAMS Ecole Hautes Etud Sci Sociales, F-75013 Paris, FranceTechnion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel