Comparison of Purely Greedy and Orthogonal Greedy Algorithm

被引:1
|
作者
Vishnevetskiy, K. S. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119992, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119899, Russia
基金
俄罗斯科学基金会;
关键词
greedy approximation; m-term approximation; Hilbert space; coherence parameter;
D O I
10.1134/S0001434624010048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conditions for a dictionary in a Hilbert space are obtained that are necessary or sufficient for the coincidence of purely greedy and orthogonal greedy algorithms with respect to this dictionary.
引用
收藏
页码:37 / 43
页数:7
相关论文
共 50 条
  • [1] Comparison of the convergence rate of pure greedy and orthogonal greedy algorithms
    Dereventsov, A. V.
    MATHEMATICAL NOTES, 2012, 92 (3-4) : 485 - 489
  • [2] Comparison of the convergence rate of pure greedy and orthogonal greedy algorithms
    A. V. Dereventsov
    Mathematical Notes, 2012, 92 : 485 - 489
  • [3] A Vectorial Kernel Orthogonal Greedy Algorithm
    Wirtz, Daniel
    Haasdonk, Bernard
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2013, 6 : 83 - 100
  • [4] Comparison of Pure Greedy Algorithm with Pure Greedy Algorithm in a Pair of Dictionaries
    Orlova, A. S.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2023, 78 (02) : 57 - 66
  • [5] Greedy Criterion in Orthogonal Greedy Learning
    Xu, Lin
    Lin, Shaobo
    Zeng, Jinshan
    Liu, Xia
    Fang, Yi
    Xu, Zongben
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (03) : 955 - 966
  • [6] Comparison of Pure Greedy Algorithm with Pure Greedy Algorithm in a Pair of Dictionaries
    A. S. Orlova
    Moscow University Mathematics Bulletin, 2023, 78 : 57 - 66
  • [7] Optimal Convergence Rates for the Orthogonal Greedy Algorithm
    Siegel, Jonathan W.
    Xu, Jinchao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3354 - 3361
  • [8] On the optimality of the Orthogonal Greedy Algorithm for μ-coherent dictionaries
    Livshitz, E. D.
    JOURNAL OF APPROXIMATION THEORY, 2012, 164 (05) : 668 - 681
  • [9] Convergence of orthogonal greedy algorithm with errors in projectors
    Fedotov N.N.
    Moscow University Mathematics Bulletin, 2013, 68 (1) : 37 - 41
  • [10] Orthogonal greedy algorithm for frames in Hilbert spaces
    Poumai, K. T.
    Kaushik, S. K.
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 212 - 216