Magnetic-confinement fusion

被引:1
|
作者
J. Ongena
R. Koch
R. Wolf
H. Zohm
机构
[1] Laboratory for Plasma Physics,
[2] Royal Military Academy,undefined
[3] Member of the Trilateral Euregio Cluster (TEC),undefined
[4] Max-Planck Institut für Plasmaphysik,undefined
[5] Max-Planck Institut für Plasmaphysik,undefined
关键词
D O I
10.1038/nphys3745
中图分类号
学科分类号
摘要
Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.
引用
收藏
页码:398 / 410
页数:12
相关论文
共 50 条
  • [1] Magnetic-confinement fusion
    Ongena, J.
    Koch, R.
    Wolf, R.
    Zohm, H.
    NATURE PHYSICS, 2016, 12 (05) : 398 - 410
  • [2] Erratum: Magnetic-confinement fusion
    J. Ongena
    R. Koch
    R. Wolf
    H. Zohm
    Nature Physics, 2016, 12 (7) : 717 - 717
  • [3] Computational challenges in magnetic-confinement fusion physics
    Fasoli, A.
    Brunner, S.
    Cooper, W. A.
    Graves, J. P.
    Ricci, P.
    Sauter, O.
    Villard, L.
    NATURE PHYSICS, 2016, 12 (05) : 411 - 423
  • [4] Computational challenges in magnetic-confinement fusion physics
    A. Fasoli
    S. Brunner
    W. A. Cooper
    J. P. Graves
    P. Ricci
    O. Sauter
    L. Villard
    Nature Physics, 2016, 12 (5) : 411 - 423
  • [5] Magnetic-confinement fusion (vol 12, pg 398, 2016)
    Ongena, J.
    Koch, R.
    Wolf, R.
    Zohm, H.
    NATURE PHYSICS, 2016, 12 (07) : 717 - 717
  • [6] Direct Measurement of Current Filament Structures in a Magnetic-Confinement Fusion Device
    Spolaore, M.
    Vianello, N.
    Agostini, M.
    Cavazzana, R.
    Martines, E.
    Scarin, P.
    Serianni, G.
    Spada, E.
    Zuin, M.
    Antoni, V.
    PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [8] MAGNETIC CONFINEMENT FUSION
    FURTH, HP
    SCIENCE, 1990, 249 (4976) : 1522 - 1527
  • [9] Empirical similarity of frequency spectra of the edge-plasma fluctuations in toroidal magnetic-confinement systems
    Pedrosa, MA
    Hidalgo, C
    Carreras, BA
    Balbín, R
    García-Cortés, I
    Newman, D
    van Milligen, B
    Sánchez, E
    Bleuel, J
    Endler, M
    Davies, S
    Matthews, GF
    PHYSICAL REVIEW LETTERS, 1999, 82 (18) : 3621 - 3624
  • [10] Physics of magnetic confinement fusion
    Wagner, F.
    NEW STRATEGIES FOR ENERGY GENERATION, CONVERSION AND STORAGE, 2013, 54