Flood simulation in sub-humid regions is one of the difficult issues in hydrology. Liulin experimental watershed, a typical sub-humid region in northern China, was selected for flood simulation. 20 rainfall–runoff events from 1995 to 2021 were selected to calibrate and validate the sub-distributed HEC-HMS model. The applicability of the model to flood simulation in the Liulin experimental watershed was explored. The influences of different runoff generation methods (SCS-CN method and initial constant method) and simulation time steps (1 h and 30 min) on flood simulation were compared. The applicability of the model to different antecedent moisture conditions and different flood characteristics was also analyzed. The results showed that all the schemes of rainfall–runoff models with different runoff generation methods and time steps have satisfactory performance in simulating floods. When the time step is 1 h, the initial constant runoff generation method was more suitable for runoff simulation, however, when the time step is 30 min, the SCS-CN runoff generation method was more robust. As the simulation time step decreased, the model performance was improved, but the improvement amplitude was greater when the SCS-CN method was used. In addition, the model performed better when antecedent moisture was higher, and the flood was single-peak. When the measured peak discharge was lower than 100 m3/s, the model could simulate the peak discharge and peak time better, and conversely, the model could simulate the flood volume and flood hydrograph better. This study is valuable for flood forecasting in sub-humid areas.