Optimal algorithms for semi-online preemptive scheduling problems on two uniform machines

被引:0
|
作者
Yong He
Yiwei Jiang
机构
[1] Zhejiang University,Department of Mathematics
[2] Zhejiang University,State Key Lab of CAD & CG
来源
Acta Informatica | 2004年 / 40卷
关键词
Processing Time; Optimal Algorithm; Schedule Problem; Speed Ratio; Time Ratio;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates two preemptive semi-online scheduling problems to minimize makespan on two uniform machines. In the first semi-online problem, we know in advance that all jobs have their processing times in between p and rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p > 0,r\geq 1)$\end{document}. In the second semi-online problem, we know the size of the largest job in advance. We design an optimal semi-online algorithm which is optimal for every combination of machine speed ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\geq 1$\end{document} and job processing time ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq 1$\end{document} for the first problem, and an optimal semi-online algorithm for every machine speed ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\geq 1$\end{document} for the second problem.
引用
收藏
页码:367 / 383
页数:16
相关论文
共 50 条