The Hodge-Elliptic Genus, Spinning BPS States, and Black Holes

被引:0
|
作者
Shamit Kachru
Arnav Tripathy
机构
[1] Stanford University,Stanford Institute for Theoretical Physics, Department of Physics
[2] Harvard University,Department of Mathematics
来源
Communications in Mathematical Physics | 2017年 / 355卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We perform a refined count of BPS states in the compactification of M-theory on K3×T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K3 \times T^2}$$\end{document}, keeping track of the information provided by both the SU(2)L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SU(2)_L}$$\end{document} and SU(2)R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SU(2)_R}$$\end{document} angular momenta in the SO(4) little group. Mathematically, this four variable counting function may be expressed via the motivic Donaldson–Thomas counts of K3×T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K3 \times T^2}$$\end{document}, simultaneously refining Katz, Klemm, and Pandharipande’s motivic stable pairs counts on K3 and Oberdieck–Pandharipande’s Gromov–Witten counts on K3×T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K3 \times T^2}$$\end{document}. This provides the first full answer for motivic curve counts of a compact Calabi–Yau threefold. Along the way, we develop a Hodge-elliptic genus for Calabi–Yau manifolds—a new counting function for BPS states that interpolates between the Hodge polynomial and the elliptic genus of a Calabi–Yau.
引用
收藏
页码:245 / 259
页数:14
相关论文
共 50 条
  • [1] The Hodge-Elliptic Genus, Spinning BPS States, and Black Holes
    Kachru, Shamit
    Tripathy, Arnav
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (01) : 245 - 259
  • [2] Counting spinning dyons in maximal supergravity: the Hodge-elliptic genus for tori
    Benjamin, Nathan
    Kachru, Shamit
    Tripathy, Arnav
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (11) : 2081 - 2092
  • [3] Counting spinning dyons in maximal supergravity: the Hodge-elliptic genus for tori
    Nathan Benjamin
    Shamit Kachru
    Arnav Tripathy
    Letters in Mathematical Physics, 2017, 107 : 2081 - 2092
  • [4] Lessons on black holes from the elliptic genus
    Giveon, Amit
    Itzhaki, Nissan
    Troost, Jan
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [5] Lessons on black holes from the elliptic genus
    Amit Giveon
    Nissan Itzhaki
    Jan Troost
    Journal of High Energy Physics, 2014
  • [7] Hodge-Elliptic Genera, K3 Surfaces and Enumerative Geometry
    Michele Cirafici
    Annales Henri Poincaré, 2024, 25 : 2731 - 2779
  • [8] Hodge-Elliptic Genera and How They Govern K3 Theories
    Katrin Wendland
    Communications in Mathematical Physics, 2019, 368 : 187 - 221
  • [9] Hodge-Elliptic Genera, K3 Surfaces and Enumerative Geometry
    Cirafici, Michele
    ANNALES HENRI POINCARE, 2024, 25 (05): : 2731 - 2779
  • [10] BPS black holes
    de Wit, Bernard
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2007, 171 : 16 - 38