On invariant orthants of bilinear systems

被引:7
|
作者
Sachkov Yu.L. [1 ]
机构
[1] Program Systems Institute, Russian Academy of Sciences
关键词
Bilinear systems; Controllability; Invariant domains; Orthant; Sign-symmetric matrices;
D O I
10.1023/A:1022829201840
中图分类号
学科分类号
摘要
A characterization of n × n matrices A such that the corresponding linear vector field Ax has invariant orthants in ℝn is obtained. This result is then applied to give necessary global controllability conditions for bilinear systems.
引用
收藏
页码:137 / 147
页数:10
相关论文
共 50 条
  • [1] Invariant orthants of bilinear system
    Sachkov, YL
    DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 1027 - 1029
  • [2] Invariant symmetric bilinear forms on Lie triple systems
    Zhang, ZX
    Shi, YQ
    Zhao, LN
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5563 - 5573
  • [3] INVARIANT DOMAINS OF 3-DIMENSIONAL BILINEAR-SYSTEMS
    SACHKOV, YL
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (04): : 23 - 26
  • [4] Invariant sets and controllability of discrete-time bilinear systems
    Tie, Lin
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (07): : 970 - 979
  • [5] Stabilizability conditions for a class of time-invariant bilinear systems
    Zhu, Kunping
    Cheng, Chuwang
    Tang, Bingyong
    Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2000, 17 (03): : 384 - 386
  • [6] Non-degenerate invariant bilinear forms on nonassociative triple systems
    Zhao, LN
    Li, XW
    Zhang, ZX
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (02) : 275 - 290
  • [7] Reduced Order Bilinear Time Invariant Systems Using Singular Perturbation
    Solikhatun
    Saragih, Roberd
    Joelianto, Endra
    2013 3RD INTERNATIONAL CONFERENCE ON INSTRUMENTATION CONTROL AND AUTOMATION (ICA 2013), 2013, : 92 - 97
  • [8] NON-DEGENERATE INVARIANT BILINEAR FORMS ON NONASSOCIATIVE TRIPLE SYSTEMS
    ZHAO Lina LI Xuewen ZHANG Zhixue Department of Mathematics and Computer Science
    Chinese Annals of Mathematics, 2005, (02) : 275 - 290
  • [9] Space of invariant bilinear forms
    Ravi S Kulkarni
    Jagmohan Tanti
    Proceedings - Mathematical Sciences, 2018, 128
  • [10] Space of invariant bilinear forms
    Kulkarni, Ravi S.
    Tanti, Jagmohan
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04):