Optimal policy trees

被引:0
|
作者
Maxime Amram
Jack Dunn
Ying Daisy Zhuo
机构
[1] Interpretable AI,
来源
Machine Learning | 2022年 / 111卷
关键词
Machine learning; Decision trees; Prescriptive decision making;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an approach for learning optimal tree-based prescription policies directly from data, combining methods for counterfactual estimation from the causal inference literature with recent advances in training globally-optimal decision trees. The resulting method, Optimal Policy Trees, yields interpretable prescription policies, is highly scalable, and handles both discrete and continuous treatments. We conduct extensive experiments on both synthetic and real-world datasets and demonstrate that these trees offer best-in-class performance across a wide variety of problems.
引用
收藏
页码:2741 / 2768
页数:27
相关论文
共 50 条
  • [1] Optimal policy trees
    Amram, Maxime
    Dunn, Jack
    Zhuo, Ying Daisy
    MACHINE LEARNING, 2022, 111 (07) : 2741 - 2768
  • [2] ON OPTIMAL TREES
    EADES, P
    STAPLES, J
    JOURNAL OF ALGORITHMS, 1981, 2 (04) : 369 - 384
  • [3] Policy Learning for Many Outcomes of Interest: Combining Optimal Policy Trees with Multi-objective Bayesian Optimisation
    Rehill, Patrick
    Biddle, Nicholas
    COMPUTATIONAL ECONOMICS, 2024,
  • [4] Optimal survival trees
    Bertsimas, Dimitris
    Dunn, Jack
    Gibson, Emma
    Orfanoudaki, Agni
    MACHINE LEARNING, 2022, 111 (08) : 2951 - 3023
  • [5] Optimal Partition Trees
    Timothy M. Chan
    Discrete & Computational Geometry, 2012, 47 : 661 - 690
  • [6] Optimal survival trees
    Dimitris Bertsimas
    Jack Dunn
    Emma Gibson
    Agni Orfanoudaki
    Machine Learning, 2022, 111 : 2951 - 3023
  • [7] Optimal Partition Trees
    Chan, Timothy M.
    PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 1 - 10
  • [8] MINIMAX OPTIMAL TREES
    STANFEL, LE
    INFORMATION STORAGE AND RETRIEVAL, 1974, 10 (7-8): : 279 - 279
  • [9] Optimal classification trees
    Bertsimas, Dimitris
    Dunn, Jack
    MACHINE LEARNING, 2017, 106 (07) : 1039 - 1082
  • [10] Optimal classification trees
    Dimitris Bertsimas
    Jack Dunn
    Machine Learning, 2017, 106 : 1039 - 1082