Using known Cα-multiplier result, we give necessary and sufficient conditions for the second order delay equations: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
u''(t) = Au(t) + Fu_t + Gu'_t + f(t), t \in \mathbb{R}
$$\end{document}
to have maximal regularity in Hölder continuous function spaces Cα(ℝ, X), where X is a Banach space, A is a closed operator in X, F, G ∊ ℒ(C([−r, 0],X), X) are delay operators for some fixed r > 0.