Impact of Megacity Shanghai on the Urban Heat-Island Effects over the Downstream City Kunshan

被引:0
|
作者
Han-Qing Kang
Bin Zhu
Tong Zhu
Jia-Li Sun
Jian-Jun Ou
机构
[1] Nanjing University of Information Science & Technology,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters
[2] CIRA/Colorado State University,undefined
[3] NOAA/NESDIS/STAR/JCSDA,undefined
[4] Jiangsu Climate Centre,undefined
[5] Shanghai Marine Meteorological Centre,undefined
来源
Boundary-Layer Meteorology | 2014年 / 152卷
关键词
Upstream Effects; Urban Boundary Layer; Urban Dry Island; Urban Heat Island;
D O I
暂无
中图分类号
学科分类号
摘要
The impact of upstream urbanization on the enhanced urban heat-island (UHI) effects between Shanghai and Kunshan is investigated by analyzing seven years of surface observations and results from mesoscale model simulations. The observational analysis indicates that, under easterly and westerly winds, the temperature difference between Shanghai and Kunshan increases with wind speed when the wind speed <\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}5 m s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. The Weather Research and Forecasting (WRF) numerical model, coupled with a one-layer urban canopy model (UCM), is used to examine the UHI structure and upstream effects by replacing the urban surface of Shanghai and/or Kunshan with cropland. The WRF/UCM modelling system is capable of reproducing the surface temperature and wind field reasonably well. The simulated urban canopy wind speed is a better representation of the near-surface wind speed than is the 10-m wind speed at the centre of Shanghai. Without the urban landscape of Shanghai, the surface air temperature over downstream Kunshan would decrease by 0.2–0.4 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C in the afternoon and 0.4–0.6 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C in the evening. In the simulation with the urban landscape of Shanghai, a shallow cold layer is found above the UHI, with a minimum temperature of about -0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.2$$\end{document} to -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.5 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C during the afternoon hours. Strong horizontal divergence is found in this cold layer. The easterly breeze over Shanghai is strengthened at the surface by strong UHI effects, but weakened at upper levels. With the appearance of the urban landscape specific humidity decreases by 0.5–1 g kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} within the urban area because of the waterproof property of an urban surface. On the other hand, the upper-level specific humidity is increased because of water vapour transferred by the strong upward vertical motions.
引用
收藏
页码:411 / 426
页数:15
相关论文
共 50 条
  • [1] Impact of Megacity Shanghai on the Urban Heat-Island Effects over the Downstream City Kunshan
    Kang, Han-Qing
    Zhu, Bin
    Zhu, Tong
    Sun, Jia-Li
    Ou, Jian-Jun
    BOUNDARY-LAYER METEOROLOGY, 2014, 152 (03) : 411 - 426
  • [3] ANALYSIS OF THE KUWAIT-CITY URBAN HEAT-ISLAND
    NASRALLAH, HA
    BRAZEL, AJ
    BALLING, RC
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 1990, 10 (04) : 401 - 405
  • [4] URBAN HEAT-ISLAND
    KIM, HH
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (12) : 2319 - 2336
  • [5] SOLAR-RADIATION AND SURFACE-TEMPERATURE IN SHANGHAI CITY AND THEIR RELATION TO URBAN HEAT-ISLAND INTENSITY
    CHOW, SD
    ZHENG, JC
    WU, L
    ATMOSPHERIC ENVIRONMENT, 1994, 28 (12) : 2119 - 2127
  • [6] THE URBAN HEAT-ISLAND OF MILAN
    BACCI, P
    MAUGERI, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 1992, 15 (04): : 417 - 424
  • [7] GLASGOW AS AN URBAN HEAT-ISLAND
    HARTLEY, M
    SCOTTISH GEOGRAPHICAL MAGAZINE, 1977, 93 (02): : 80 - 89
  • [8] Effects of Land Use Type Change on the Urban Heat-island Effect in the Urban Area of Chengdu City
    DangQing
    Nian, Yang Wu
    EPLWW3S 2011: 2011 INTERNATIONAL CONFERENCE ON ECOLOGICAL PROTECTION OF LAKES-WETLANDS-WATERSHED AND APPLICATION OF 3S TECHNOLOGY, VOL 2, 2011, : 148 - 151
  • [9] HEAT-ISLAND OF QUEBEC CITY IN WINTER
    LEDUC, R
    JACQUES, G
    FERLAND, M
    LELIEVRE, C
    BOUNDARY-LAYER METEOROLOGY, 1981, 21 (03) : 315 - 324
  • [10] Naturalizing urban watershed hydrology to mitigate urban heat-island effects
    Endreny, Theodore
    HYDROLOGICAL PROCESSES, 2008, 22 (03) : 461 - 463