Simulation of Low-Intensity, Low-Temperature Solar Arrays with Software and Hardware Tools

被引:0
|
作者
F. Topputo
F. Bernelli-Zazzera
机构
[1] Politecnico di Milano,Dept. of Aerospace Science and Technology
来源
Aerotecnica Missili & Spazio | 2013年 / 92卷 / 3-4期
关键词
D O I
10.1007/BF03404667
中图分类号
学科分类号
摘要
In this work we discuss issues related to the simulation of low power systems with hardware means. Simulating low power systems is a challenging task as the possible low-intensity, low-temperature environment, together with possible dust deposition and ice condensation, worsen not only the production of power but also make it difficult to predict it. To overcome these problems, we have developed solutions in terms of software and hardware tools for power estimation and simulation. The developed low power, hardware solar array simulator system is briefly discussed in this paper. Although this solution is reported for the case of Rosetta lander Philae, it applies also to possible low power future missions aimed to perform in-situ operations on comets and asteroids.
引用
收藏
页码:94 / 100
页数:6
相关论文
共 50 条
  • [1] Low-Intensity Low-Temperature (LILT) Power prediction of JUICE solar array
    Kroon, Martin
    Bongers, Ed
    Cavel, Cyril
    Baur, Carsten
    Faleg, Francesco
    Riva, Stefano
    2019 EUROPEAN SPACE POWER CONFERENCE (ESPC), 2019,
  • [2] Low-intensity low-temperature (LILT) solar cells for deep space missions
    Zhang, Qiming
    Zhang, Baoguo
    Guo, Hongliang
    Tang, Yue
    Song, Jian
    Sun, Qiang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (10):
  • [3] Low-intensity low-temperature (LILT) solar cells for deep space missions
    Qiming Zhang
    Baoguo Zhang
    Hongliang Guo
    Yue Tang
    Jian Song
    Qiang Sun
    Applied Physics A, 2022, 128
  • [4] Deep-Space Solar Array Power Prediction Using Monte Carlo Simulation with Low-Intensity/Room-Temperature and Low-Intensity/Low-Temperature Solar Cell Ground Test Data
    Hoang, Bao
    Beyene, Samuel
    Harty, Tyler
    Huang, Wei
    Hisiro, Wade
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 2781 - 2786
  • [5] Low-intensity low-temperature analysis of perovskite solar cells for deep space applications
    Colenbrander, Tyler
    Peng, Jun
    Wu, Yiliang
    Kelzenberg, Michael
    Huang, Jing-Shun
    Macfarland, Clara
    Thorbourn, Dennis
    Kowalczyk, Robert
    Kim, Wousik
    Brophy, John
    Bui, Anh Dinh
    Nguyen, Dang-Thuan
    Nguyen, Hieu T.
    Atwater, Harry A.
    White, Thomas P.
    Grandidier, Jonathan
    ENERGY ADVANCES, 2023, 2 (02): : 298 - 307
  • [6] Low-Intensity and Low-Temperature Effects on the Upright Metamorphic Four-Junction Solar Cells
    Zhou, Jiaming
    Zhao, Kelun
    Zhang, Yanqing
    Liu, Chaoming
    Li, Xinyi
    Sun, Lijie
    Zheng, Hongquan
    Qi, Chunhua
    Ma, Guoliang
    Wang, Tianqi
    Huo, Mingxue
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (12):
  • [7] EL SALVADORS NEGOTIATED TRANSITION - LOW-INTENSITY CONFLICT TO LOW-INTENSITY DEMOCRACY LOW-INTENSITY DEMOCRACY
    STAHLERSHOLK, R
    JOURNAL OF INTERAMERICAN STUDIES AND WORLD AFFAIRS, 1994, 36 (04): : 1 - 59
  • [8] Low-Intensity High-Temperature (LIHT) Solar Cells for Venus Atmosphere
    Grandidier, Jonathan
    Kirk, Alexander P.
    Osowski, Mark L.
    Gogna, Pawan K.
    Fan, Shizhao
    Lee, Minjoo L.
    Stevens, Margaret A.
    Jahelka, Phillip
    Tagliabue, Giulia
    Atwater, Harry A.
    Cutts, James A.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (06): : 1621 - 1626
  • [9] Flexible Cu(In,Ga)Se2 Solar Cells for Outer Planetary Missions: Investigation Under Low-Intensity Low-Temperature Conditions
    Brown, Collin R.
    Whiteside, Vincent R.
    Poplayskyy, Dmitry
    Hossain, Khalid
    Dhoubhadel, Mangal S.
    Sellers, Ian R.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (02): : 552 - 558
  • [10] Low-intensity surveillance
    Greblo, Edoardo
    AUT AUT, 2008, (340): : 14 - 36