Gleason parts for algebras of holomorphic functions in infinite dimensions

被引:0
|
作者
Richard M. Aron
Verónica Dimant
Silvia Lassalle
Manuel Maestre
机构
[1] Kent State University,Department of Mathematical Sciences
[2] Universidad de San Andrés,Departamento de Matemática y Ciencias
[3] CONICET,Departamento de Análisis Matemático
[4] Universidad de Valencia,undefined
来源
Revista Matemática Complutense | 2020年 / 33卷
关键词
Gleason parts; Spectrum; Algebras of holomorphic functions; Bounded analytic functions; 46J15; 30H50; 46E50; 30H05;
D O I
暂无
中图分类号
学科分类号
摘要
For a complex Banach space X with open unit ball BX,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_X,$$\end{document} consider the Banach algebras H∞(BX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}^\infty (B_X)$$\end{document} of bounded scalar-valued holomorphic functions and the subalgebra Au(BX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_u(B_X)$$\end{document} of uniformly continuous functions on BX.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_X.$$\end{document} Denoting either algebra by A,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A},$$\end{document} we study the Gleason parts of the set of scalar-valued homomorphisms M(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(\mathcal {A})$$\end{document} on A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}.$$\end{document} Following remarks on the general situation, we focus on the case X=c0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = c_0,$$\end{document} giving a complete characterization of the Gleason parts of M(Au(Bc0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(\mathcal {A}_u(B_{c_0}))$$\end{document} and, among other things, showing that every fiber in M(H∞(Bc0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(\mathcal {H}^\infty (B_{c_0}))$$\end{document} over a point in Bℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\ell _\infty }$$\end{document} contains 2c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^c$$\end{document} discs lying in different Gleason parts.
引用
收藏
页码:415 / 436
页数:21
相关论文
共 50 条