Predicting length-of-stay in preterm neonates

被引:0
|
作者
B. Zernikow
K. Holtmannspötter
E. Michel
F. Hornschuh
K. Groote
K.-H. Hennecke
机构
[1] Vestische Kinderklinik,
[2] Witten/Herdecke University,undefined
[3] Lloydstrasse 5,undefined
[4] D-45711 Datteln,undefined
[5] Germany,undefined
[6] Tel.: +49-2363-975-0,undefined
[7] Fax: +49-2363-64211,undefined
[8] Medizinischer Dienst der Krankenversicherung (MDK) Westfalen-Lippe,undefined
[9] Münster,undefined
[10] Germany,undefined
来源
关键词
Key words Artificial neural network; Neural networks computer; Length-of-stay; Preterm neonate; Prediction;
D O I
暂无
中图分类号
学科分类号
摘要
In neonatology, the early prediction of length-of-stay (LOS) may help in decision making. We retrospectively studied the accuracy of two LOS prediction models, namely a multiple linear regression model (MR) and an artificial neural network (ANN). Preterm neonates (n = 2144) were randomly assigned to a training-and-test (75%), or validation patient set (25%). A total of 40 first-day-of-life items (input data) and the date of discharge (output data) were routinely available. Training-and-test set data were used to identify input items with impact on LOS (input variables) using MR analysis to establish a MR prediction model and to train and test an ANN on those selected variables. Fed with validation set data, predicted LOS obtained from MR and ANN was compared individually with actual LOS. Predicted and actual LOS were highly correlated (for MR, r = 0.85 to 0.90; for ANN, r = 0.87 to 0.92).
引用
收藏
页码:59 / 62
页数:3
相关论文
共 50 条
  • [1] Predicting length-of-stay in preterm neonates
    Zernikow, B
    Holtmannspötter, K
    Michel, E
    Hornschuh, F
    Groote, K
    Hennecke, KH
    EUROPEAN JOURNAL OF PEDIATRICS, 1999, 158 (01) : 59 - 62
  • [2] Predicting Length of Stay in Preterm Neonates 52
    Boris Zernikow
    Karl Holtmannspötter
    Erik Michel
    Friedemann Hornschuh
    Katja Groote
    Karl H Hennecke
    Pediatric Research, 1997, 42 (3) : 393 - 393
  • [3] Respiratory diseases and length-of-stay
    Nakayama, Mika
    Satoh, Hiroaki
    Sekizawa, Kiyohisa
    AUSTRALASIAN JOURNAL ON AGEING, 2003, 22 (02) : 105 - 106
  • [4] Predicting the length-of-stay of pediatric patients using machine learning algorithms
    Medeiros, Natalia Boff
    Fogliatto, Flavio Sanson
    Rocha, Miriam Karla
    Tortorella, Guilherme Luz
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2025, 63 (02) : 483 - 496
  • [5] Dementia Hospital Length-of-Stay and Cost
    Wilson, Leslie S.
    ANNALS OF NEUROLOGY, 2012, 72 : S125 - S125
  • [6] PHYSICIANS RESPONSE TO LENGTH-OF-STAY PROFILING
    EVANS, JH
    HWANG, YC
    NAGARAJAN, N
    MEDICAL CARE, 1995, 33 (11) : 1106 - 1119
  • [7] ADMISSION, LENGTH-OF-STAY DECLINES SLACKEN
    DOLKART, D
    HOSPITALS, 1986, 60 (15): : 70 - 71
  • [8] HOSPITAL PAYMENT SOURCE AND LENGTH-OF-STAY
    LUTJENS, LRJ
    NURSING SCIENCE QUARTERLY, 1994, 7 (04) : 174 - 179
  • [9] A straightforward approach to designing a scoring system for predicting length-of-stay of cardiac surgery patients
    Barbini, Paolo
    Barbini, Emanuela
    Furini, Simone
    Cevenini, Gabriele
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2014, 14
  • [10] A straightforward approach to designing a scoring system for predicting length-of-stay of cardiac surgery patients
    Paolo Barbini
    Emanuela Barbini
    Simone Furini
    Gabriele Cevenini
    BMC Medical Informatics and Decision Making, 14