Su-Schrieffer-Heeger chain with one pair of 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric defects

被引:0
|
作者
L. Jin
P. Wang
Z. Song
机构
[1] Nankai University,
[2] School of Physics,undefined
关键词
D O I
10.1038/s41598-017-06198-9
中图分类号
学科分类号
摘要
The topologically nontrivial edge states induce 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} transition in Su-Schrieffer-Heeger (SSH) chain with one pair of gain and loss at boundaries. In this study, we investigated a pair of 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric defects located inside the SSH chain, in particular, the defects locations are at the chain centre. The 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} symmetry breaking of the bound states leads to the 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} transition, the 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric phases and the localized states were studied. In the broken 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric phase, all energy levels break simultaneously in topologically trivial phase; however, two edge states in topologically nontrivial phase are free from the influence of the 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric defects. We discovered 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric bound states induced by the 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric local defects at the SSH chain centre. The 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric bound states significantly increase the 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} transition threshold and coalesce to the topologically protected zero mode with vanishing probabilities on every other site of the left-half chain and the right-half chain, respectively.
引用
收藏
相关论文
共 50 条