A calculus based on a q-deformed Heisenberg algebra

被引:0
|
作者
Cerchiai B.L. [1 ,2 ]
Hinterding R. [1 ,2 ]
Madore J. [2 ,3 ]
Wess J. [1 ,2 ]
机构
[1] Sektion Physik, Ludwig-Maximilian Universität, D-80333 München
[2] Max-Planck-Inst. Physik, D-80805 München
[3] Lab. Phys. Theor. et Hautes Energies, Université de Paris-Sud, F-91405 Orsay
关键词
Differential Form; Position Variable; Differential Calculus; Physical Field; Leibniz Rule;
D O I
10.1007/s100529901097
中图分类号
学科分类号
摘要
We show how one can construct a differential calculus over an algebra where position variables cursive Greek chi and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on this derivative differential forms and an exterior differential calculus can be constructed.
引用
收藏
页码:547 / 558
页数:11
相关论文
共 50 条
  • [1] A calculus based on a q-deformed Heisenberg algebra
    Cerchiai, BL
    Hinterding, R
    Madore, J
    Wess, J
    EUROPEAN PHYSICAL JOURNAL C, 1999, 8 (03): : 547 - 558
  • [2] REPRESENTATIONS OF A Q-DEFORMED HEISENBERG ALGEBRA
    HEBECKER, A
    SCHRECKENBERG, S
    SCHWENK, J
    WEICH, W
    WESS, J
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 64 (02): : 355 - 359
  • [3] Operator realizations of the q-deformed Heisenberg algebra
    Department of Chemistry, Zhengzhou University, Zhengzhou 450052, China
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1600, 4-5 (251-256):
  • [4] Operator representations of a q-deformed Heisenberg algebra
    Schmüdgen, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) : 4596 - 4605
  • [5] Operator realizations of the q-deformed Heisenberg algebra
    Pan, HY
    Zhao, ZS
    PHYSICS LETTERS A, 2001, 282 (4-5) : 251 - 256
  • [6] Fourier transformations for the q-deformed Heisenberg algebra
    Schwenk, J
    QUANTUM GROUPS AND THEIR APPLICATIONS IN PHYSICS, 1996, 127 : 525 - 540
  • [7] Biderivations of q-deformed Heisenberg-Virasoro algebra
    Yuan, Lamei
    Li, Jiaxin
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 3651 - 3663
  • [8] NCG q-Deformed Weyl-Heisenberg Algebra
    Harrat, M.
    Mebarki, N.
    Salah, A. Redouane
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 469 - 471
  • [9] The q-deformed Heisenberg algebra and k-fermions
    Pan, HY
    Zhao, ZS
    PHYSICS LETTERS A, 2003, 312 (1-2) : 1 - 6
  • [10] Deformed Heisenberg algebra:: origin of q-calculus
    Swamy, PN
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 328 (1-2) : 145 - 153