Spot volatility estimation using delta sequences

被引:0
|
作者
Cecilia Mancini
Vanessa Mattiussi
Roberto Renò
机构
[1] Università di Firenze,
[2] City University,undefined
[3] Università di Siena,undefined
来源
Finance and Stochastics | 2015年 / 19卷
关键词
Spot volatility; High-frequency data; Microstructure noise; Dirac delta; Fourier estimator; 91G70; C13; C14; C22; G1;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a unifying class of nonparametric spot volatility estimators based on delta sequences and conceived to include many of the existing estimators in the field as special cases. The full limit theory is first derived when unevenly sampled observations under infill asymptotics and fixed time horizon are considered, and the state variable is assumed to follow a Brownian semimartingale. We then extend our class of estimators to include Poisson jumps or financial microstructure noise in the observed price process. This work makes different approaches (kernels, wavelets, Fourier) comparable. For example, we explicitly illustrate some drawbacks of the Fourier estimator. Specific delta sequences are applied to data from the S&P 500 stock index futures market.
引用
收藏
页码:261 / 293
页数:32
相关论文
共 50 条
  • [1] Spot volatility estimation using delta sequences
    Mancini, Cecilia
    Mattiussi, Vanessa
    Reno, Roberto
    FINANCE AND STOCHASTICS, 2015, 19 (02) : 261 - 293
  • [2] Spot volatility estimation using the Laplace transform
    Curato, Imma Valentina
    Mancino, Maria Elvira
    Recchioni, Maria Cristina
    ECONOMETRICS AND STATISTICS, 2018, 6 : 22 - 43
  • [3] PROBABILITY DENSITY ESTIMATION USING DELTA SEQUENCES
    WALTER, G
    BLUM, J
    ANNALS OF STATISTICS, 1979, 7 (02): : 328 - 340
  • [4] Estimation of the Hurst Parameter in Spot Volatility
    Li, Yicun
    Teng, Yuanyang
    MATHEMATICS, 2022, 10 (10)
  • [5] Uniform convergence rates for spot volatility estimation
    Li, Chen
    Li, Pengtao
    Zhang, Yilun
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2023, 8 (03): : 321 - 332
  • [6] Estimation of spot volatility with superposed noisy data
    Liu, Qiang
    Liu, Yiqi
    Liu, Zhi
    Wang, Li
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2018, 44 : 62 - 79
  • [7] High-frequency volatility of volatility estimation free from spot volatility estimates
    Sanfelici, Simona
    Curato, Imma Valentina
    Mancino, Maria Elvira
    QUANTITATIVE FINANCE, 2015, 15 (08) : 1331 - 1345
  • [8] KERNEL ESTIMATION OF SPOT VOLATILITY WITH MICROSTRUCTURE NOISE USING PRE-AVERAGING
    Figueroa-Lopez, Jose E.
    Wu, Bei
    ECONOMETRIC THEORY, 2024, 40 (03) : 558 - 607
  • [9] Spot volatility estimation for high-frequency data
    Fan, Jianqing
    Wang, Yazhen
    STATISTICS AND ITS INTERFACE, 2008, 1 (02) : 279 - 288
  • [10] A central limit theorem for the functional estimation of the spot volatility
    Hoang-Long Ngo
    Ogawa, Shigeyoshi
    MONTE CARLO METHODS AND APPLICATIONS, 2009, 15 (04): : 353 - 380