Frattini subformations of foliated formations of T-groups

被引:0
|
作者
Aleksandr Tsarev
机构
[1] Jeju National University,Department of Mathematics
[2] P.M. Masherov Vitebsk State University,Department of Mathematics and IT
关键词
Multioperator ; -group; -foliated formation; lattice of formations; Frattini subformation; maximal subformation; -subgroup functor; Primary 20D10; Secondary 20F17;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}$$\end{document} the class of all multioperator T-groups satisfying the minimality and maximality conditions for T-subgroups, where T is a set of algebraic group operations. In each T-group G, we select a system of T-subgroups τ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (G)$$\end{document} and say that τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is a T-subgroup functor if it is satisfying the following two conditions: (1) G∈τ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \in \tau (G)$$\end{document} for every T-group G; and (2) for every epimorphism ϱ:A→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho : A \rightarrow B$$\end{document} and any H∈τ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \in \tau (A)$$\end{document} and K∈τ(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \in \tau (B)$$\end{document}, we have Hϱ∈τ(B)andKϱ-1∈τ(A).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^\varrho \in \tau (B) \, \text{ and } \, K^{\varrho ^{-1}} \in \tau (A). $$\end{document} Let n be a positive integer, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}$$\end{document}, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {H}$$\end{document} be a τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-closed n-multiply Ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _1$$\end{document}-foliated M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}$$\end{document}-formations with direction φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} such that φ0⩽φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _0 \leqslant \varphi $$\end{document}, and H⊆F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {H} \subseteq \mathfrak {F}$$\end{document}. Denote by F/Ω1FnφτH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F} /^\tau _{\Omega _1 F_n^\varphi } \mathfrak {H}$$\end{document} the lattice of all τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-closed n-multiply Ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _1$$\end{document}-foliated M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}$$\end{document}-formations (with direction φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} such that φ0⩽φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _0 \leqslant \varphi $$\end{document}) such that H⊆X⊆F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {H} \subseteq \mathfrak {X} \subseteq \mathfrak {F}$$\end{document}. If X⊂F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {X} \subset \mathfrak {F}$$\end{document} and the lattice F/Ω1FnφτX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F} /^\tau _{\Omega _1 F_n^\varphi } \mathfrak {X}$$\end{document} consists of only two elements then X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {X}$$\end{document} is called a maximalτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-closed n-multiply Ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _1$$\end{document}-foliated M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}$$\end{document}-formation (with direction φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} such that φ0⩽φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _0 \leqslant \varphi $$\end{document}) of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}$$\end{document}. In the present paper, the properties of the intersection of these formations are studied.
引用
收藏
页码:103 / 111
页数:8
相关论文
共 50 条
  • [1] Frattini subformations of foliated formations of T-groups
    Tsarev, Aleksandr
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (01): : 103 - 111
  • [2] Ω-Foliated Formations of Multioperator T-Groups
    Vedernikov, V. A.
    Demina, E. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (05) : 789 - 804
  • [3] Ω-Foliated Formations of Multioperator T-Groups
    V. A. Vedernikov
    E. N. Demina
    Siberian Mathematical Journal, 2010, 51 : 789 - 804
  • [4] Laws of the lattices of foliated formations of T-groups
    Aleksandr Tsarev
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 433 - 440
  • [5] Laws of the lattices of foliated formations of T-groups
    Tsarev, Aleksandr
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (03) : 433 - 440
  • [6] THE FRATTINI ARGUMENT AND T-GROUPS
    BREWSTER, B
    SEHGAL, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (02) : 239 - 245
  • [7] On maximal subformations of n-multiple Ω-foliated formations of finite groups
    Sorokina, M. M.
    Maksakov, S. P.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2021, 21 (01): : 15 - 25
  • [8] On maximal subformations of n-multiple Omega-foliated formations of finite groups
    Sorokina, Marina M.
    Maksakov, Seraphim P.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2021, 21 (01): : 15 - 25
  • [9] DIRECT DECOMPOSITIONS OF Ω-FOLIATED FITTING CLASSES OF MULTIOPERATOR T-GROUPS
    Bazhanova, E. N.
    Vedernikov, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (02) : 222 - 232
  • [10] The lattices of n-multiply Omega(1)-foliated tau-closed formations of multioperator T-groups
    Demina, E. N.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2012, 22 (02): : 147 - 172