Smart pooling: AI-powered COVID-19 informative group testing

被引:0
|
作者
María Escobar
Guillaume Jeanneret
Laura Bravo-Sánchez
Angela Castillo
Catalina Gómez
Diego Valderrama
Mafe Roa
Julián Martínez
Jorge Madrid-Wolff
Martha Cepeda
Marcela Guevara-Suarez
Olga L. Sarmiento
Andrés L. Medaglia
Manu Forero-Shelton
Mauricio Velasco
Juan M. Pedraza
Rachid Laajaj
Silvia Restrepo
Pablo Arbelaez
机构
[1] Universidad de los Andes,Center for Research and Formation in Artificial Intelligence
[2] École Polytechnique Fédérale de Lausanne,Laboratory of Applied Photonics Devices
[3] Universidad de los Andes,School of Science
[4] Universidad de los Andes,Applied Genomics Research Group, Vice Presidency for Research and Creation
[5] Universidad de los Andes,School of Medicine
[6] Universidad de los Andes,Department of Industrial Engineering
[7] Universidad de los Andes,Department of Physics
[8] Universidad de los Andes,Department of Mathematics
[9] Universidad de los Andes,School of Economics
[10] Universidad de los Andes,Department of Biomedical Engineering
[11] Johns Hopkins University,Department of Computer Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Massive molecular testing for COVID-19 has been pointed out as fundamental to moderate the spread of the pandemic. Pooling methods can enhance testing efficiency, but they are viable only at low incidences of the disease. We propose Smart Pooling, a machine learning method that uses clinical and sociodemographic data from patients to increase the efficiency of informed Dorfman testing for COVID-19 by arranging samples into all-negative pools. To do this, we ran an automated method to train numerous machine learning models on a retrospective dataset from more than 8000 patients tested for SARS-CoV-2 from April to July 2020 in Bogotá, Colombia. We estimated the efficiency gains of using the predictor to support Dorfman testing by simulating the outcome of tests. We also computed the attainable efficiency gains of non-adaptive pooling schemes mathematically. Moreover, we measured the false-negative error rates in detecting the ORF1ab and N genes of the virus in RT-qPCR dilutions. Finally, we presented the efficiency gains of using our proposed pooling scheme on proof-of-concept pooled tests. We believe Smart Pooling will be efficient for optimizing massive testing of SARS-CoV-2.
引用
收藏
相关论文
共 50 条
  • [1] Smart pooling: AI-powered COVID-19 informative group testing
    Escobar, Maria
    Jeanneret, Guillaume
    Bravo-Sanchez, Laura
    Castillo, Angela
    Gomez, Catalina
    Valderrama, Diego
    Roa, Mafe
    Martinez, Julian
    Madrid-Wolff, Jorge
    Cepeda, Martha
    Guevara-Suarez, Marcela
    Sarmiento, Olga L.
    Medaglia, Andres L.
    Forero-Shelton, Manu
    Velasco, Mauricio
    Pedraza, Juan M.
    Laajaj, Rachid
    Restrepo, Silvia
    Arbelaez, Pablo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Opportunities of Adopting AI-Powered Robotics to Tackle COVID-19
    Mohanty, Kajol
    Subiksha, S.
    Kirthika, S.
    Bh, Sujal
    Sokkanarayanan, Sumathi
    Bose, Panjavarnam
    Sathiyanarayanan, Mithileysh
    2021 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2021, : 703 - 708
  • [3] AI-powered cloud for COVID-19 and other infectious disease diagnosis
    Al-Turjman, Fadi
    Personal and Ubiquitous Computing, 2023, 27 (03) : 661 - 664
  • [4] AI-powered COVID-19 forecasting: a comprehensive comparison of advanced deep learning methods
    Tariq, Muhammad Usman
    Ismail, Shuhaida Binti
    OSONG PUBLIC HEALTH AND RESEARCH PERSPECTIVES, 2024, 15 (02) : 115 - 136
  • [5] Measurement of Utility in User Access of COVID-19 Literature via AI-powered Chatbot
    Oruche, Roland
    Milman, Eric D.
    Cheng, Xiyao
    Joish, Megha
    Kulkarni, Chaitra
    Sharma, Agrim
    Kee, Kerk
    Regunath, Hariharan
    Calyam, Prasad
    2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2021,
  • [6] AI-Powered Radiomics Algorithm Based on Slice Pooling for the Glioma Grading
    Zhao, Guohua
    Man, Panpan
    Bai, Jie
    Li, Longfei
    Wang, Peipei
    Yang, Guan
    Shi, Lei
    Tao, Yongcai
    Lin, Yusong
    Cheng, Jingliang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) : 5383 - 5393
  • [7] Predicting Intensive Care Unit Admissions in COVID-19 Patients: An AI-Powered Machine Learning Model
    Mutawa, A. M.
    BIG DATA AND COGNITIVE COMPUTING, 2025, 9 (01)
  • [8] An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
    Charkoftaki, Georgia
    Aalizadeh, Reza
    Santos-Neto, Alvaro
    Tan, Wan Ying
    Davidson, Emily A.
    Nikolopoulou, Varvara
    Wang, Yewei
    Thompson, Brian
    Furnary, Tristan
    Chen, Ying
    Wunder, Elsio A.
    Coppi, Andreas
    Schulz, Wade
    Iwasaki, Akiko
    Pierce, Richard W.
    Cruz, Charles S. Dela
    Desir, Gary V.
    Kaminski, Naftali
    Farhadian, Shelli
    Veselkov, Kirill
    Datta, Rupak
    Campbell, Melissa
    Thomaidis, Nikolaos S.
    Ko, Albert I.
    Thompson, David C.
    Vasiliou, Vasilis
    Yale IMPACT Study Team
    HUMAN GENOMICS, 2023, 17 (01)
  • [9] An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
    Georgia Charkoftaki
    Reza Aalizadeh
    Alvaro Santos-Neto
    Wan Ying Tan
    Emily A. Davidson
    Varvara Nikolopoulou
    Yewei Wang
    Brian Thompson
    Tristan Furnary
    Ying Chen
    Elsio A. Wunder
    Andreas Coppi
    Wade Schulz
    Akiko Iwasaki
    Richard W. Pierce
    Charles S. Dela Cruz
    Gary V. Desir
    Naftali Kaminski
    Shelli Farhadian
    Kirill Veselkov
    Rupak Datta
    Melissa Campbell
    Nikolaos S. Thomaidis
    Albert I. Ko
    David C. Thompson
    Vasilis Vasiliou
    Human Genomics, 17
  • [10] An AI-powered Smart Routing Solution for Payment Systems
    Bygari, Ramya
    Gupta, Aayush
    Raghuvanshi, Shashwat
    Bapna, Aakanksha
    Sahu, Birendra
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 2026 - 2033