Sobolev inequalities of exponential type

被引:0
|
作者
D. E. Edmunds
R. Hurri-Syrjänen
机构
[1] University of Sussex,Centre for Mathematical Analysis and Its Applications
[2] University of Helsinki,Department of Mathematics
来源
关键词
SOBOLEV Inequality; Orlicz Space; Exponential Type; Orlicz Function; Irregular Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We give sufficient conditions for domains to satisfy Sobolev inequalities of single exponential type. Earlier work in this area imposed more stringent conditions on the domains and is thus contained in our results. Moreover, the class of functions considered is based onLn loganL witha<1−1/n, n being the dimension of the underlying space. The limiting casea=1−1/n gives rise to an inequality of double exponential type which is shown to be valid in a large class of irregular domains. This inequality is new even in smooth domains.
引用
收藏
页码:61 / 92
页数:31
相关论文
共 50 条
  • [1] Sobolev inequalities of exponential type
    Edmunds, DE
    Hurri-Syrjänen, R
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) : 61 - 92
  • [2] LOGARITHMIC SOBOLEV INEQUALITIES AND EXPONENTIAL INTEGRABILITY
    AIDA, S
    MASUDA, T
    SHIGEKAWA, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) : 83 - 101
  • [3] Best constants in some exponential Sobolev inequalities
    Kawohl, Bernd
    Lucia, Marcello
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (04) : 1907 - 1927
  • [4] A CLASS OF SOBOLEV TYPE INEQUALITIES
    Tian, Gu-Ji
    Wang, Xu-Jia
    METHODS AND APPLICATIONS OF ANALYSIS, 2008, 15 (02) : 263 - 276
  • [5] ON INEQUALITIES OF HARDY-SOBOLEV TYPE
    Balinsky, A.
    Evans, W. D.
    Hundertmark, D.
    Lewis, R. T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 94 - 106
  • [6] SOME REMARKS ON SOBOLEV TYPE INEQUALITIES
    ADIMURTHI
    YADAVA, SL
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (04) : 427 - 442
  • [7] MULTIPLICATIVE SOBOLEV INEQUALITIES OF THE LADYZHENSKAYA TYPE
    Cho, Yong-Kum
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 335 - 341
  • [8] Fractional sobolev-type inequalities
    Anastassiou, George A.
    APPLICABLE ANALYSIS, 2008, 87 (05) : 607 - 624
  • [9] On Choquet Integrals and Sobolev Type Inequalities
    Petteri Harjulehto
    Ritva Hurri-Syrjänen
    La Matematica, 2024, 3 (4): : 1379 - 1399
  • [10] Exponential integrability and transportation cost related to logarithmic sobolev inequalities
    Bobkov, SG
    Götze, F
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) : 1 - 28