Proper Holomorphic Maps in Euclidean Spaces Avoiding Unbounded Convex Sets

被引:0
|
作者
Barbara Drinovec Drnovšek
Franc Forstnerič
机构
[1] University of Ljubljana,Faculty of Mathematics and Physics
[2] Institute of Mathematics,undefined
[3] Physics and Mechanics,undefined
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Stein manifold; Holomorphic embedding; Oka manifold; Minimal surface; Convexity; 32H02; 32Q56; 52A20; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if E is a closed convex set in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}(n>1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n>1)$$\end{document} contained in a closed halfspace H such that E∩bH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\cap bH$$\end{document} is nonempty and bounded, then the concave domain Ω=Cn\E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega = {\mathbb {C}}^n{\setminus } E$$\end{document} contains images of proper holomorphic maps f:X→Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow {\mathbb {C}}^n$$\end{document} from any Stein manifold X of dimension <n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<n$$\end{document}, with approximation of a given map on closed compact subsets of X. If in addition 2dimX+1≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\dim X+1\le n$$\end{document} then f can be chosen an embedding, and if 2dimX=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\dim X=n$$\end{document}, then it can be chosen an immersion. Under a stronger condition on E, we also obtain the interpolation property for such maps on closed complex subvarieties.
引用
收藏
相关论文
共 50 条