Segmentation and recognition of filed sweet pepper based on improved self-attention convolutional neural networks

被引:0
|
作者
Weidong Zhu
Jun Sun
Simin Wang
Kaifeng Yang
Jifeng Shen
Xin Zhou
机构
[1] School of Electrical and Information Engineering of Jiangsu University,
来源
Multimedia Systems | 2023年 / 29卷
关键词
Sweet pepper; Semantic segmentation; Recognition; Convolutional neural networks; Machine vision;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic and accurate recognition of the parts to be picked is the key to realize the intelligent picking of sweet pepper. However, pepper fruits are always covered by other organs, and small objects such as stems and shoots are difficult to be recognized by machines or cameras under certain extreme conditions. To accurately segment and recognize all kinds of objects in sweet pepper images captured at night, three experiments were performed in this paper, and an enhanced model based on convolutional neural networks was eventually achieved. In experiment I, several semantic segmentation networks were trained on a small data set, and the full-resolution residual network (FRRN) was taken as a primary network. Then, the impact of resolution of input images on the segmentation effect was investigated in experiment II. To strengthen the feature presentation of inconspicuous objects, the position attention module was appended on top of the FRRN in experiment III. This architecture was further trained to provide more precise segmentation results. The experimental result shows that the mean intersection over union is 78.88%, which is at least 1.94% points higher than other models, and the mean pixel accuracy is 97.94% on the test set. The proposed method has higher generalization performance when facing unforeseen picking situations; meanwhile, it is generic and can be applied to other fruits and vegetables.
引用
收藏
页码:223 / 234
页数:11
相关论文
共 50 条
  • [1] Segmentation and recognition of filed sweet pepper based on improved self-attention convolutional neural networks
    Zhu, Weidong
    Sun, Jun
    Wang, Simin
    Yang, Kaifeng
    Shen, Jifeng
    Zhou, Xin
    MULTIMEDIA SYSTEMS, 2023, 29 (01) : 223 - 234
  • [2] Convolutional Self-Attention Networks
    Yang, Baosong
    Wang, Longyue
    Wong, Derek F.
    Chao, Lidia S.
    Tu, Zhaopeng
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 4040 - 4045
  • [3] Automatic Food Recognition Using Deep Convolutional Neural Networks with Self-attention Mechanism
    Rahib Abiyev
    Joseph Adepoju
    Human-Centric Intelligent Systems, 2024, 4 (1): : 171 - 186
  • [4] Crop leaf disease recognition based on Self-Attention convolutional neural network
    Zeng, Weihui
    Li, Miao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 172
  • [5] Regional Self-Attention Convolutional Neural Network for Facial Expression Recognition
    Zhou, Lifang
    Wang, Yi
    Lei, Bangjun
    Yang, Weibin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (08)
  • [6] Self-attention convolutional neural network for improved MR image reconstruction
    Wu, Yan
    Ma, Yajun
    Liu, Jing
    Du, Jiang
    Xing, Lei
    INFORMATION SCIENCES, 2019, 490 : 317 - 328
  • [7] Global Convolutional Neural Networks With Self-Attention for Fisheye Image Rectification
    Kim, Byunghyun
    Lee, Dohyun
    Min, Kyeongyuk
    Chong, Jongwha
    Joe, Inwhee
    IEEE ACCESS, 2022, 10 : 129580 - 129587
  • [8] Combining convolutional neural networks and self-attention for fundus diseases identification
    Wang, Keya
    Xu, Chuanyun
    Li, Gang
    Zhang, Yang
    Zheng, Yu
    Sun, Chengjie
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Global Convolutional Neural Networks With Self-Attention for Fisheye Image Rectification
    Kim, Byunghyun
    Lee, Dohyun
    Min, Kyeongyuk
    Chong, Jongwha
    Joe, Inwhee
    IEEE Access, 2022, 10 : 129580 - 129587
  • [10] Combining convolutional neural networks and self-attention for fundus diseases identification
    Keya Wang
    Chuanyun Xu
    Gang Li
    Yang Zhang
    Yu Zheng
    Chengjie Sun
    Scientific Reports, 13