Measurement Error and Environmental Epidemiology: a Policy Perspective

被引:10
|
作者
Edwards J.K. [1 ]
Keil A.P. [1 ]
机构
[1] Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Dr. 2101 McGavran-Greenberg Hall CB #7435, Chapel Hill, 27599, NC
基金
美国国家卫生研究院;
关键词
Bias (epidemiology); Environmental epidemiology; Measurement error;
D O I
10.1007/s40572-017-0125-4
中图分类号
学科分类号
摘要
PURPOSE OF REVIEW: Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making.; RECENT FINDINGS: We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure-response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention. Under a policy perspective, the analyst must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology.
引用
收藏
页码:79 / 88
页数:9
相关论文
共 50 条
  • [1] Methods in environmental epidemiology: The problem of measurement error
    Hertz-Picciotto, I
    Dominici, F
    Armstrong, B
    Berhane, K
    EPIDEMIOLOGY, 2000, 11 (04) : S158 - S158
  • [2] Measurement error caused by spatial misalignment in environmental epidemiology
    Gryparis, Alexandros
    Paciorek, Christopher J.
    Zeka, Ariana
    Schwartz, Joel
    Coull, Brent A.
    BIOSTATISTICS, 2009, 10 (02) : 258 - 274
  • [3] Consequences of exposure measurement error for confounder identification in environmental epidemiology
    Budtz-Jorgensen, E
    Keiding, N
    Grandjean, P
    Weihe, P
    White, RF
    STATISTICS IN MEDICINE, 2003, 22 (19) : 3089 - 3100
  • [4] Measurement error in environmental epidemiology and the shape of exposure-response curves
    Rhomberg, Lorenz R.
    Chandalia, Juhi K.
    Long, Christopher M.
    Goodman, Julie E.
    CRITICAL REVIEWS IN TOXICOLOGY, 2011, 41 (08) : 651 - 671
  • [5] Correlated Biomarker Measurement Error: An Important Threat to Inference in Environmental Epidemiology
    Pollack, A. Z.
    Perkins, N. J.
    Mumford, S. L.
    Ye, A.
    Schisterman, E. F.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 (01) : 84 - 92
  • [6] The Measurement Error Elephant in the Room: Challenges and Solutions to Measurement Error in Epidemiology
    Innes, Gabriel K.
    Bhondoekhan, Fiona
    Lau, Bryan
    Gross, Alden L.
    Ng, Derek K.
    Abraham, Alison G.
    EPIDEMIOLOGIC REVIEWS, 2022, 43 (01) : 94 - 105
  • [7] The Measurement Error Elephant in the Room: Challenges and Solutions to Measurement Error in Epidemiology
    Innes, Gabriel K.
    Bhondoekhan, Fiona
    Lau, Bryan
    Gross, Alden L.
    Ng, Derek K.
    Abraham, Alison G.
    EPIDEMIOLOGIC REVIEWS, 2021, 43 (01) : 94 - 105
  • [8] EPIDEMIOLOGY AND ENVIRONMENTAL HEALTH POLICY
    GOLDSMITH, JR
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1972, 1 (02) : 93 - 100
  • [9] Causality, measurement error and multicollinearity in epidemiology
    Zidek, JV
    Wong, H
    Le, ND
    Burnett, R
    ENVIRONMETRICS, 1996, 7 (04) : 441 - 451
  • [10] MEASUREMENT ISSUES IN ENVIRONMENTAL EPIDEMIOLOGY
    HATCH, M
    THOMAS, D
    ENVIRONMENTAL HEALTH PERSPECTIVES, 1993, 101 : 49 - 57